В каком классе изучают химию – Какие школьные предметы надо отменить или сократить. Геометрия, физика и другая трата времени | Палач

alexxlab
alexxlab
26.04.2020

Содержание

Учебные предметы в России — Википедия

Уче́бные предме́ты — учебные курсы, изучаемые в школах России и других постсоветских государствах.

Название также применяется для обозначения учебных дисциплин в профессиональных образовательных организациях и образовательных организациях высшего образования.

По итогам каждых четверти (в 1-9-х классах), триместра (в некоторых школах), полугодий (10-11), и каждого учебного года ученикам выставляются оценки. После окончания школьного курса обучения по учебным предметам сдаются выпускные экзамены и, если ученик желает продолжать обучение, вступительные экзамены в вузы.

В 9-м и 11-м классах в обязательном порядке сдаются экзамены по русскому языку и математике в формах ОГЭ (для 9-х классов) и ЕГЭ (для 11-х классов). Помимо основных предметов ученик может сдавать любое количество дополнительных. Обычно это рекомендовано для поступления в профильный класс после 9-го класса и необходимо для поступления в вуз после 11-го класса. Ежегодно пишутся ВПР.

Список учебных предметов, изучаемых в школе (11-летнее обучение)[править | править код]

Математические[править | править код]

  • Матема́тика
    : 1—6 класс (в некоторых школах до 5 класса)
  • Алгебра: 7-11 класс (в некоторых школах с 5 класса)
  • Геометрия: 7—11 класс (в некоторых школах с 5 класса)
  • Информа́тика (ИКТ): 7—11 класс (в некоторых школах с 5 класса) 1-4 классы подготовительные, как факультатив.

В начальной школе ученик изучает базовые понятия математики, правила сложения, вычитания, умножения, деления. Затем, перейдя в среднюю школу, с 5 класса он изучает дробные числа, функции. С 7 класса начинается разделение обучения математике на алгебру (системы координат, системы уравнений, тригонометрия) и геометрию (планиметрия, стереометрия, векторы). В 10-11 классах с подачи академика А. Колмогорова, возможно прохождение начал анализа (пределы, дифференцирование в 10 и интегрирование в 11). Изучение информатики может начинаться и позже 5 класса. Программа изучения включает системы, языки программирования и программы, компьютеры, историю вычислительной техники. Однако часто предусмотрено изучение только определённых программ (какую-либо определённую среду разработки программного обеспечения, определённый текстовый редактор), за что школьный курс информатики критикуется специалистами. Изучаются Паскаль, Си, JavaScript. Ранее изучались Бейсик и Фортран.

Общественно-научные[править | править код]

В рамках истории с 5 класса изучают всеобщую историю и историю России (в том числе историю СССР). В 5 классе начинается и география (иногда под названием природоведение).

  • Исто́рия: 5—11 классы. В 3—4 классе (не во всех школах) изучается пропедевтический курс «рассказов по истории России», рассматривающий лишь выборочные события в отечественной истории и (в смысле карт военных действий) с выбросом значительных деталей. В 5 классе изучается история Древнего мира, в 6 классе изучаются по всеобщей истории — История Средних веков, а по истории России — период с древнейших времён по XVI век. В 7—8 классах по всеобщей истории изучается Новая история, а по истории России в 7 классе изучается период XVII—XVIII веков, в 8 классе — история XIX века. В 9 классе изучается по всеобщей истории — новейшая история, а по истории России — история XX и XXI веков. В 10—11 классах изучается история России и мира в форме проблемно-аналитического курса, где ученики должны работать с предложенной авторами учебника проблемой. В 10 классе — от древних времён до конца XIX века, а в 11 классе — XX век — начало XXI века.
  • География: 5—11 классы. В 5—6 классе — общий курс географии, в 7 — физическая география мира, в 8—9 — география России (в 8 классе физическая, а в 9 экономическая), в 10—11 — экономическая география мира.

Естественно-научные[править | править код]

  • Природоведение: 5 класс (не везде)
  • Окружающий мир: 1—4
  • География: 5—11 классы (в некоторых школах с 6 класса)
  • Биология: 5—11 класс
  • Астрономия: 10 класс (в некоторых школах в 11 классе)
  • Физика: 7—11 классы (в некоторых школах с 5 класса)
  • Химия: 8—11 класс (в некоторых школах с 7 класса)
  • Основы безопасности жизнедеятельности (ОБЖ): 5—11 классы (в некоторых школах с 8 класса)
  • Естествознание: 5—11 класс (не везде). Согласно ФК ГОС 2004 года в 10-11 классе была возможность замены этим предметом физики, химии и биологии, в случае если ни один из этих предметов не изучается на профильном уровне.
  • Экология: 5—11 классы (не везде). В обязательном минимуме содержания образования есть раздел «Экология», при этом этого предмета нет в базисном учебном плане.

Обучение естественнонаучным дисциплинам начинается с 1-го класса, (Окружающий мир или Мир вокруг нас), в 5 классе этот учебный предмет имеет название «

Природоведение», по ФК ГОС предусмотрена возможность изучения предмета «Природоведение» в 6 классе за счёт объединения предметов «Биология» и «География».

С 5 класса изучается биология. (в 5 классе — базовые понятия и принципы , а в 6 классе — ботаника. В 7 — зоология, в 8 — анатомия человека, в 9—11 — общая биология). По другой программе в 6—7 классах изучается ботаника, в 7 — зоология беспозвоночных, в 8 — позвоночных, в 9 — анатомия, в 10—11 — общая биология. В настоящее время в большинстве школ предусмотрено изучение всего курса биологии к концу 11 класса.

В 7 классе начинается физика. Сначала изучается введение в эту науку и основы МКТ, затем — механика. В 8 классе изучаются термодинамика, электричество, электромагнетизм, основы оптики. В 9 классе — механика, электромагнетизм (сначала электричество и потом магнетизм), ядерная физика. В 10 классе — механика, МКТ и термодинамика, электричество. В 11 — электромагнетизм, геометрическая оптика и квантовая оптика, квантовая физика, а также основы СТО. В 11 классе также изучается астрономия.

Изучение химии обычно начинается с 7 или 8 класса (7—9 класс — неорганическая химия, в конце 9 класса — органика, 10 класс — органическая химия, 11 класс — общая химия и повторение неорганической химии)

Гуманитарные[править | править код]

  • История:5—11 классы
  • Гражданове́дение: 5—11 классы (не везде)
  • Обществозна́ние: 5—11 классы. С 5—9 класс изучается основы обществознания. Официальное название предмета — «Обществознание (включая экономику и право)», в 10-11 классе на базовом уровне предметы могут изучаться как отдельно, так и в составе предмета «Обществознание». На профильном уровне предметы изучаются отдельно друг от друга.
  • Основы религиозных культур и светской этики: 4 класс. В качестве эксперимента — с 2010 года в отдельных субъектах РФ. Во всех школах в обязательном порядке — с 2012 года. Включает:

Филологи́ческие[править | править код]

  • Чистописание: 1 класс (не везде) (обычно как факультатив)
  • Обучение грамоте: 1 класс
  • Родной язык: 1-11 классы.Республиках со своим языком или национальных районах либо школах с этнокультурным компонентом. В указанных школах в 1 — 2 классах допускалось «занимать» на этот предмет часы, предусмотренные на освоение «Технологии» и «Изобразительного искусства» с последующим «возвращением» этих часов.
  • Русский язык: 1—9 класс
  • Чтение: 1—4 классы, в БУП РФ именуется «Литературное чтение»
  • Литература: 5—11 классы
  • Иностранный язык: 2—11 классы ( в некоторых школах с 1 класса) (английский, французский, немецкий, испанский, могут изучаться и другие (литовский, украинский, китайский, польский, древнегреческий, иврит, эстонский, латынь), но экзамен в форме ЕГЭ можно сдать лишь по этим языкам)

В 1 классе ученики изучают чтение (литературу) и письмо (родной язык или русский язык), русский язык (орфографию, пунктуацию, синтаксис, грамматику, риторику). С 1 по 8 класс на уроках литературы проходят различных зарубежных авторов и русскую литературу (в том числе современную), с 9 по 11 — русскую классическую литературу. Школьники пишут сочинения. Изучаются творчество писателей и поэтов — в основном Пушкина, Тургенева, Достоевского, Есенина, Твардовского, современных писателей. Во многих школах предусмотрено изучение более одного иностранного языка. При этом в большинстве школ обязательно (как первый или как второй) изучается английский. Среди языков, по которым не предусмотрен ЕГЭ, наиболее распространён китайский.

Ранее была предусмотрена возможность распределения часов, предусмотренных на освоение учебного предмета «Иностранный язык» во 2, 3, 4 классах на русский язык и литературу. Сейчас такой возможности нет.

Трудовое обучение[править | править код]

  • Труд («Художественный труд»): 1—4 класс (иногда 1—8 класс).
  • Технология: 5—11 класс. В некоторых школах только до 7—8 класса. По БУП РФ предусмотрен только в 5 и 6 классах.
  • Черчение: (не везде) как правило, в некоторых из старших (9—11) классов (не везде). (В некоторых школах (7)8—9 классы) В БУП РФ 2004 и 2011 года отсутствует, при этом курс черчения фактически входит в курс Технологии.
  • Общественно полезный труд. Планируется . [1]

Физкультура[править | править код]

  • Физическая культура: 1—11 класс. Как правило, проходит в различных местах (спортивный зал, стадион, лес), где ученики занимаются спортом.
  • Различные виды спорта, возможно, по выбору или как факультатив, например:

Искусство[править | править код]

Список учебных предметов, изучаемых в школе в прежние годы[править | править код]

Математические[править | править код]

Арифметика: 1—4 класс

Естественно-научные[править | править код]

Природоведение: 1—4 класс (сейчас 5 класс, не везде).

Черчение (5—9 классы). Изучается на усмотрение руководства школ.

Гуманитарные[править | править код]

Обществоведение или Человек и общество (ЧиО): 5(9)—11 класс

Филологические[править | править код]

Родная литература: 1—4 класс (только в республиках со своим языком)

На краеведении ученики изучают историю и литературу своего края.

На классном часе ученики обсуждают проблемы и успехи в школе, в начальной школе — записывают домашнее задание. Классный час обычно проходит раз в неделю, и, как правило, не учитывается в составе предельно допустимой нагрузки.

На психотренинге ученики решают интеллектуальные задачи и задания.

Учебным планом могут быть предусмотрены элективные курсы, которые выбираются учащимися из определённого набора.

Для чего нужно изучать химию? — урок. Химия, 8–9 класс.

Слово «химия» в современном мире часто вызывает отрицательную реакцию. В воображении предстают отравленные водоемы, кислотные дожди, вредные химические добавки к пище и т. д. Но химия окружает нас повсюду. Нет ни одной сферы, где бы не использовались продукты химической и нефтехимической промышленности. Школьная тетрадь, книга, ручка, доска, мебель, одежда, дома, машины и многое-многое другое изготовлены благодаря знаниям химии.

 

Химия — интересная и сложная наука.

 

Для овладения ею необходимо не только усвоить изучаемый материал, но и научиться применять полученные знания в повседневной жизни.

 

 

Для каждого человека важно знание основ химической науки и понимание химических процессов для объяснения природных явлений, правильного использования химических знаний с целью улучшения своего быта, сохранения здоровья и окружающей среды.
Знания по химии нужны для развития химического производства, улучшения качества жизни людей.

Грамотное использование химических знаний позволяет человечеству решать важнейшие проблемы современности — продовольственную, энергетическую, экологическую.

Пример:

так, продуктивность сельскохозяйственного производства во многом зависит от того, как химическая промышленность обеспечивает его минеральными удобрениями и средствами защиты растений от вредителей. Велика роль химии в производстве строительных материалов, синтетических тканей, пластмасс, красок, моющих средств, медикаментов. Химия обеспечивает переработку полезных ископаемых в ценные продукты: металлы и их сплавы, топливо.

Обрати внимание!

Неумелое, неконтролируемое использование продуктов химического производства приводит к загрязнению окружающей среды, что губительно действует на живые организмы!

Поэтому химию надо последовательно и внимательно изучать. Прежде всего нужно усвоить основные законы и важнейшие химические понятия, учиться применять эти знания в различных жизненных ситуациях.

Источники:

http://www.classifieds24.ru/images/2454/2453298/large_1.jpg

Химия — Википедия

Хи́мия (от араб. کيمياء‎, произошедшего, предположительно, от египетского слова km.t (чёрный), откуда возникло также название Египта, чернозёма и свинца — «чёрная земля»[источник не указан 315 дней]; другие возможные варианты: др.-греч. χυμος — «сок», «эссенция», «влага», «вкус», др.-греч. χυμα — «сплав (металлов)», «литьё», «поток», др.-греч. χυμευσις — «смешивание») — одна из важнейших и обширных областей естествознания, наука о веществах, их составе и строении, их свойствах, зависящих от состава и строения, их превращениях, ведущих к изменению состава — химических реакциях, а также о законах и закономерностях, которым эти превращения подчиняются. Поскольку все вещества состоят из атомов, которые благодаря химическим связям способны формировать молекулы, то химия занимается, прежде всего, рассмотрением перечисленных выше задач на атомно-молекулярном уровне, то есть на уровне химических элементов и их соединений. Химия имеет немало связей с физикой и биологией, по сути граница между ними условна[1], а пограничные области изучаются квантовой химией, химической физикой, физической химией, геохимией, биохимией и другими науками.

Зачатки химии возникли ещё со времён появления человека. Поскольку человек всегда так или иначе имел дело с химическими веществами, его первые эксперименты с огнём, дублением шкур, приготовлением пищи можно назвать зачатками практической химии. Постепенно практические знания накапливались, и в самом начале развития цивилизации люди умели готовить некоторые краски, эмали, яды и лекарства. Вначале человек использовал биологические процессы, такие, как брожение, гниение; позже, с освоением огня, начал использовать процессы горения, спекания, сплавления. Использовались окислительно-восстановительные реакции, не протекающие в живой природе — например, восстановление металлов из их соединений.

Такие ремёсла, как металлургия, гончарство, стеклоделие, крашение, парфюмерия, косметика, достигли значительного развития ещё до начала нашей эры. Например, состав современного бутылочного стекла практически не отличается от состава стекла, применявшегося в 4000 году до н. э. в Египте. Хотя химические знания тщательно скрывались жрецами от непосвящённых, они всё равно медленно проникали в другие страны. К европейцам химическая наука попала главным образом от арабов после завоевания ими Испании в 711 году. Они называли эту науку «алхимией», от них это название распространилось и в Европе.

Известно, что в Египте уже в 3000 году до н. э. умели получать медь из её соединений, используя древесный уголь в качестве восстановителя, а также получали серебро и свинец. Постепенно в Египте и Месопотамии было развито производство бронзы, а в северных странах — железа. Делались также теоретические находки. Например, в Китае с XXII века до н. э. существовала теория об основных элементах (Вода, Огонь, Дерево, Золото, Земля). В Месопотамии возникла идея о противоположностях, из которых построен мир: огонь—вода, тепло—холод, сухость—влажность и т. д.

В V веке до н. э. в Греции Левкипп и Демокрит развили теорию о строении вещества из атомов — атомизм. По аналогии со строением письма они заключили, что как речь делится на слова, а слова состоят из букв, так и все вещества состоят из определённых соединений (молекул), которые в свою очередь состоят из неделимых элементов (атомов).

В V веке до н. э. Эмпедокл предложил считать основными элементами (стихиями) Воду, Огонь, Воздух и Землю. В IV веке до н. э. Платон развил учение Эмпедокла: каждому из этих элементов соответствовал свой цвет и своя правильная пространственная фигура атома, определяющая его свойства: огню — красный цвет и тетраэдр, воде — синий и икосаэдр, земле — зелёный и гексаэдр, воздуху — жёлтый и октаэдр. По мнению Платона, именно из комбинаций этих «кирпичиков» и построен весь материальный мир. Учение о четырёх превращающихся друг в друга было унаследовано Аристотелем.

Алхимия[править | править код]

Слово «алхимия» попало в европейские языки из араб. الخيمياء‎ (’al-kīmiyā’), которое, в свою очередь, было заимствовано из среднегреческого χυμεία «флюид».

Культура Египта обладала хорошо развитыми технологиями, что демонстрируют объекты и сооружения, создание которых возможно только при наличии теоретической и практической базы. Подтверждение развития первичных теоретических знаний в Египте наука получает в последнее время. Тем не менее, на такое происхождение указывает, в большей степени эзотерическую, концептуальную принадлежность имеющие подобия теоретических — традиционные источники алхимии — этого причудливого и цветистого «симбиоза» искусства и, в определённой степени — примата одного из основных разделов естествознания — химии, только формально берущей начало в этом комплексе знаний и опыта. Среди таких источников в первую очередь следует назвать — «Изумрудную скрижаль» (лат. «Tabula smaragdina») Гермеса Трисмегиста, как и ряд других трактатов «Большого алхимического свода».[2][3]

Имел место ещё в IV—III веках до н. э. на Востоке (в Индии, Китае, в арабском мире) ранний «прототип» алхимии. В этот и последующие периоды были найдены новые способы получения таких элементов как ртуть, сера, фосфор, охарактеризованы многие соли, уже были известны и использовались кислота HNO3 и щёлочь NaOH. С раннего Средневековья получает развитие то, что сейчас принято понимать под алхимией, в которой традиционно соединились, наряду с вышеназванными наукообразными компонентами (в смысле современного понимания методологии науки), философские представления эпохи и новые для того времени ремесленные навыки, а также магические и мистические представления; последними, впрочем, и была наделена в отдельных своих проявлениях и особенностях философская мысль той поры. Известными алхимиками того времени были Джабир ибн Хайян (Гебер), Ибн Сина (Авиценна) и Абу Бакр ар-Рази. Ещё в античности, благодаря интенсивному развитию торговли, золото и серебро становятся всеобщим эквивалентом производимых товаров. Трудности, с которыми связано получение этих сравнительно редких металлов, побудили к попыткам практического использования натурфилософских воззрений Аристотеля о преобразовании одних веществ в другие; возникновение учения о «трансмутации», вместе с уже названным Гермесом Трисмегистом, традиция алхимической школы связывала и с его именем. Представления эти претерпели мало изменений вплоть до XIV века.[2][3]

Алхимики в поисках философского камня

В VII веке н. э. алхимия проникла в Европу. В то время, как и на протяжении всей истории, у представителей господствовавших слоёв общества особой «популярностью» пользовались предметы роскоши, в особенности — золото, поскольку именно оно являлось, как уже отмечено, эквивалентом торговой оценки. Алхимиков, в числе прочих вопросов, продолжали интересовать способы получения золота из других металлов, а также проблемы их обработки. Вместе с тем, к тому времени арабская алхимия стала отдаляться от практики и утратила влияние. Из-за особенностей технологий, обусловленных, в числе прочего — системой герметических взглядов, различием знаковых систем, терминологии и сугубо корпоративного распространения знаний «алхимическое действо» развивалось очень медленно. Наиболее известными европейскими алхимиками считаются Никола Фламель, Альберт Великий, Джон Ди, Роджер Бэкон и Раймонд Луллий. Эпоха алхимиков ознаменовала получение многих первичных веществ, разработку способов их получения, выделения и очистки. Только в XVI веке, с развитием различных производств, в том числе металлургии, а также фармацевтики, обусловленным возрастанием её роли в медицине, начали появляться исследователи, чья деятельность выразилась существенными преобразованиями в этой науке, которые приблизили становление хорошо осмысленных и актуальных практических методов этой дисциплины. Среди них, прежде всего, следует назвать Георгия Агриколу и Теофраста Бомбаста Парацельса.[2][3]

Химия как наука[править | править код]

Химия как самостоятельная дисциплина определилась в XVI—XVII веках, после ряда научных открытий, обосновавших механистическую картину мира, развития промышленности, появления буржуазного общества. Однако из-за того, что химия, в отличие от физики, не могла быть выражена количественно, существовали споры, является ли химия количественной воспроизводимой наукой или это некий иной вид познания. В 1661 году Роберт Бойль создал труд «Химик-скептик», в котором объяснил разность свойств различных веществ тем, что они построены из разных частиц (корпускул), которые и отвечают за свойства вещества. Ван Гельмонт, изучая горение, ввёл понятие газ для вещества, которое образуется при нём, открыл углекислый газ. В 1672 году Бойль открыл, что при обжиге металлов их масса увеличивается, и объяснил это захватом «весомых частиц пламени».

М. В. Ломоносов уже в первой известной своей работе, именно к данной области естествознания отношение имеющей — «Элементы математической химии» (1741), в отличие от большинства химиков своего времени, считавших эту сферу деятельности искусством, классифицирует её как науку, начиная свой труд словами[4]:

« Химия — наука об изменениях, происходящих в смешанном теле, поскольку оно смешанное. …Не сомневаюсь, что найдутся многие, которым это определение покажется неполным, будут сетовать на отсутствие начал разделения, соединения, очищения и других выражений, которыми наполнены почти все химические книги; но те, кто проницательнее, легко усмотрят, что упомянутые выражения, которыми весьма многие писатели по химии имеют обыкновение обременять без надобности свои исследования, могут быть охвачены одним словом: смешанное тело. В самом деле, обладающий знанием смешанного тела может объяснить все возможные изменения его, и в том числе разделение, соединение и т. д.»

Тепло и флогистон. Газы[править | править код]

В начале XVIII века Шталь сформулировал теорию флогистона — вещества, удаляющегося из материалов при их горении.

В 1749 году М. В. Ломоносов написал «Размышления о причине теплоты и холода» (замысел работы относится к 1742—1743 годам — см. его же «Заметки по физике и корпускулярной философии»). Высочайшую оценку этому труду дал Л. Эйлер (письмо 21 ноября 1747 года). В 1848 году профессор Д. М. Перевощиков, обстоятельно излагая важнейшие идеи М. В. Ломоносова, подчёркивает, что его теория теплоты опередила науку на полстолетия («Современник», январь 1848, т. VII, кн. 1, отд. II, с. 41—58) — с мнением этим, до того и в дальнейшем, согласуется мнение многих других исследователей.[4]

В 1754 году Блэк открыл углекислый газ, Пристли в 1774 — кислород, а Кавендиш в 1766 — водород.

В период 1740—1790 годов Лавуазье и Ломоносов[4] химически объяснили процессы горения, окисления и дыхания, доказали, что огонь — не вещество, а следствие процесса. Пруст в 1799—1806 годах сформулировал закон постоянства состава. Гей-Люссак в 1808 открыл закон объёмных отношений (закон Авогадро). Дальтон в труде «Новая система химической философии» (1808—1827) доказал существование атомов, ввёл понятие атомный вес, элемент — как совокупность одинаковых атомов.

Реинкарнация атомарной теории вещества[править | править код]

В 1811 году Авогадро выдвинул гипотезу о том, что молекулы элементарных газов состоят из двух одинаковых атомов; позднее на основе этой гипотезы Канниццаро осуществил реформу атомно-молекулярной теории. Эта теория была утверждена на первом международном съезде химиков в Карлсруэ 3-5 сентября 1860 года.

»

В 1869 году Д. И. Менделеев открыл периодический закон химических элементов и создал периодическую систему химических элементов. Он объяснил понятие химический элемент и показал зависимость свойств элемента от атомной массы. Открытием этого закона он основал химию как количественную науку, а не только как описательную и качественную.

Радиоактивность и спектры[править | править код]

Важную роль в познании структуры вещества сыграли открытия XIX века. Исследование тонкой структуры эмиссионных спектров и спектров поглощения натолкнуло учёных на мысль о их связи со строением атомов веществ. Открытие радиоактивности показало, что некоторые атомы нестабильны (изотопы) и могут самопроизвольно превращаться в новые атомы (радон — «эманация»).

Квантовая химия[править | править код]

Основная статья: Квантовая химия

Квантовая химия — это направление химии, рассматривающее строение и свойства химических соединений, реакционную способность, кинетику и механизм химических реакций на основе квантовой механики. Разделами квантовой химии являются: квантовая теория строения молекул, квантовая теория химических связей и межмолекулярных взаимодействий, квантовая теория химических реакций и реакционной способности и др.[5] Квантовая химия находится на стыке химии и квантовой физики (квантовой механики). Она занимается рассмотрением химических и физических свойств веществ на атомарном уровне (моделях электронно-ядерного строения и взаимодействий, представленных с точки зрения квантовой механики). Вследствие того, что сложность изучаемых объектов во многих случаях не позволяет находить явные решения уравнений, описывающих процессы в химических системах, применяют приближённые методы расчёта. С квантовой химией неразрывно связана вычислительная химия — дисциплина, использующая математические методы квантовой химии, адаптированные для составления специальных компьютерных программ, используемых для расчёта молекулярных свойств, амплитуды вероятности нахождения электронов в атомах, симуляции молекулярного поведения.

Элементарная частица[править | править код]

Основная статья: Элементарная частица

Это все частицы, не являющиеся атомными ядрами или атомами (протон — исключение). В узком смысле — частицы, которые нельзя считать состоящими из других частиц (при заданной энергии воздействия/наблюдения). Элементарными частицами также являются электроны (-) и протоны (+).

Атом[править | править код]

Основная статья: Атом

Наименьшая частица химического элемента, обладающая всеми его свойствами. Атом состоит из ядра и «облака» электронов вокруг него. Ядро состоит из положительно заряженных протонов и нейтральных нейтронов. Взаимодействуя, атомы могут образовывать молекулы.

Атом — предел химического разложения любого вещества. Простое вещество (если оно не является одноатомным, как, например, гелий He) разлагается на атомы одного вида, сложное вещество — на атомы разных видов.

Атомы (точнее, атомные ядра) неделимы химическим путём.

Молекула[править | править код]

» Молекулярная структура изображает связи и относительное положение атомов в молекуле. На иллюстрации показана молекула паклитаксела (номенклатурное название: (2α,4α,5β,7β,10β,13α)-4,10-бис(ацетилокси)-13-{[(2R,3S)- 3-(бензоиламино)-2-гидрокси-3-фенилпропаноил]окси}- 1,7-дигидрокси-9-оксо-5,20-эпокситакс-11-ен-2-ил бензоат)

Частица, состоящая из двух или более атомов, которая может самостоятельно существовать. Имеет постоянный качественный и количественный состав. Свойства молекулы зависят от атомов, входящих в её состав, и от характера связей между ними, от молекулярной структуры и от пространственного расположения (изомеры). Может иметь несколько разных состояний и переходить от одного состояния к другому под действием внешних факторов. Свойства вещества, состоящего из определённых молекул, зависят от состояния молекул и от свойств молекулы.

Вещество[править | править код]

Основная статья: Вещество

В соответствии с классическими научными воззрениями различаются две физические формы существования материи — вещество и поле. Вещество — это форма материи, обладающая массой (масса не равна нулю). Химия изучает большей частью вещества, организованные в атомы, молекулы, ионы и радикалы. Те, в свою очередь, состоят из элементарных частиц: электронов, протонов, нейтронов и т. д.

Простые и сложные вещества. Химические элементы[править | править код]

Среди чистых веществ принято различать простые (состоящие из атомов одного химического элемента) и сложные (образованы из атомов нескольких химических элементов) вещества.

Простые вещества следует отличать от понятий «атом» и «химический элемент».

Химический элемент — это вид атомов с определённым положительным зарядом ядра. Все химические элементы указаны в Периодической системе элементов Д. И. Менделеева; каждому элементу отвечает свой порядковый (атомный) номер в Периодической системе. Значение порядкового номера элемента и значение заряда ядра атома того же элемента совпадают, то есть химический элемент — это совокупность атомов с одинаковым порядковым номером.

Основная статья: Химический элемент

Простые вещества представляют собой формы существования химических элементов в свободном виде; каждому элементу соответствует, как правило, несколько простых веществ (аллотропных форм), которые могут различаться по составу, например атомный кислород O, кислород O2 и озон O3, или по кристаллической решётке, например алмаз и графит для элемента углерод C. Очевидно, что простые вещества могут быть одно- и многоатомными.

Сложные вещества иначе называются химическими соединениями. Этот термин означает, что вещества могут быть получены с помощью химических реакций соединения из простых веществ (химического синтеза) или разделены на элементы в свободном виде (простые вещества) с помощью химических реакций разложения (химического анализа).

Простые вещества представляют собой конечные формы химического разложения сложных веществ. Сложные вещества, образующиеся из простых веществ, не сохраняют химические свойства составляющих веществ.

Суммируя всё сказанное выше, можно записать:

E⇄ASC{\displaystyle E{\overset {S}{\underset {A}{\rightleftarrows }}}C}, где
E — простые вещества (элементы в свободном виде),
C — сложные вещества (химические соединения),
S — синтез,
A — анализ.

В настоящее время понятия «синтез» и «анализ» химических веществ используются в более широком смысле. К синтезу относят любой химический процесс, который приводит к получению необходимого вещества и при этом существует возможность его выделения из реакционной смеси. Анализом считается любой химический процесс, позволяющий определить качественный и количественный состав вещества или смеси веществ, то есть установить, из каких элементов составлено данное вещество и каково содержание каждого элемента в этом веществе. Соответственно различают качественный и количественный анализ — две составные части одной из химических наук — аналитической химии.

Металлы и неметаллы[править | править код]

Все химические элементы по их свойствам, то есть свойствам свободных атомов и свойствам образуемых элементами простых и сложных веществ, делят на металлические и неметаллические элементы. Условно к неметаллам относят элементы He, Ne, Ar, Kr, Xe, Rn, F, Cl, Br, I, At, O, S, Se, N, P, C и H. К полуметаллам относят B, Si, Ge, As, Sb, Te, иногда — Po. Остальные элементы считаются металлами.

Чистые вещества и смеси веществ[править | править код]

Индивидуальное чистое вещество обладает определённым набором характеристических свойств. От чистых веществ следует отличать смеси веществ, которые могут состоять из двух или большего числа чистых веществ, сохраняющих присущие им свойства.

Смеси веществ делятся на гомогенные (однородные) и гетерогенные (неоднородные).

Различные примеры возможных смесей веществ в разных агрегатных состояниях
Агрегатное состояние составных частей

(до образования смеси)

Гомогенная смесь

(гомогенная система)

Гетерогенная смесь

(гетерогенная система)

Твёрдое — твёрдое Твёрдые растворы, сплавы (например латунь, бронза) Горные породы (например гранит, минералосодержащие руды и др.)
Твёрдое — жидкое Жидкие растворы (например, водные растворы солей) Твёрдое в жидком — суспензии или взвеси (например, частицы глины в воде, коллоидные растворы)
Жидкое в твёрдом — жидкость в пористых телах (например, почвы, грунты)
Твёрдое — газообразное Хемосорбированный водород в платине, палладии, сталях Твёрдое в газообразном — порошки, аэрозоли, в том числе дым, пыль, смог
Газообразное в твёрдом — пористые материалы (например, кирпич, пемза)
Жидкое — твёрдое Твёрдые жидкости (например, стекло — твёрдое, но всё же жидкость) Может принимать разную форму и фиксировать её (например, посуда — разной формы и цвета)
Жидкое — жидкое Жидкие растворы (например, уксус — раствор уксусной кислоты в воде) Двух- и многослойные жидкие системы, эмульсии (например, молоко — капли жидкого жира в воде)
Жидкое — газообразное Жидкие растворы (например, раствор диоксида углерода в воде) Жидкое в газообразном — аэрозоли жидкости в газе, в том числе туманы
Газообразное в жидком — пены (например, мыльная пена)
Газообразное — газообразное Газовые растворы (смеси любых количеств и любого числа газов), напр. воздух. Гетерогенная система невозможна

В гомогенных смесях составные части нельзя обнаружить ни визуально, ни с помощью оптических приборов, поскольку вещества находятся в раздробленном состоянии на микроуровне. Гомогенными смесями являются смеси любых газов и истинные растворы, а также смеси некоторых жидкостей и твёрдых веществ, например сплавы.

В гетерогенных смесях либо визуально, либо с помощью оптических приборов можно различить области (агрегаты) разных веществ, разграниченные поверхностью раздела; каждая из этих областей внутри себя гомогенна. Такие области называются фазой.

Гомогенная смесь состоит из одной фазы, гетерогенная смесь состоит из двух или большего числа фаз.

Гетерогенные смеси, в которых одна фаза в виде отдельных частиц распределена в другой, называются дисперсными системами. В таких системах различают дисперсионную среду (распределяющую среду) и дисперсную фазу (раздробленное в дисперсионной среде вещество).

С помощью физических методов разделения можно провести разделение смесей на их составные части, то есть на чистые вещества.

Обзор известных физических методов разделения смесей веществ, используемых в химии и химической технологии
Агрегатное состояние составных частей смеси Физическое свойство, используемое для разделения Метод разделения
Твёрдое — твёрдое Плотность Отстаивание, седиментация
Смачиваемость Флотация, пенная флотация
Размер частиц Просеивание
Растворимость Экстракция, выщелачивание
Магнетизм Магнитная сепарация
Твёрдое — жидкое Плотность Седиментация, декантация (сливание жидкости с осадка), центрифугирование
Температура кипения жидкости Выпаривание, дистилляция, осушка
Размер частиц Фильтрование
Растворимость твёрдого вещества Кристаллизация
Твёрдое — газообразное Плотность Седиментация, центробежная сепарация
Размер частиц Фильтрование
Электрический заряд Электрофильтрование
Жидкое — жидкое Плотность Отстаивание (в делительной воронке, в маслоотделителе), центрифугирование
Температура кипения Дистилляция
Растворимость Экстракция
Жидкое — газообразное Плотность Седиментация, центробежная сепарация
Растворимость газа Отгонка газа (путём повышения температуры), промывание с помощью другой жидкости
Газообразное — газообразное Температура конденсации Конденсация
Абсорбируемость Абсорбция (поглощение объёмом сорбента)
Адсорбируемость Адсорбция (поглощение поверхностью сорбента)
Размер частиц Диффузия
Масса Центрифугирование

Чистыми веществами называются вещества, которые при проведении физических методов не разделяются на два или более других веществ и не изменяют своих физических свойств.

В природе не существует абсолютно чистых веществ. Например, так называемый особо чистый алюминий ещё содержит 0,001 % примесей других веществ. Таким образом, абсолютно чистое вещество — это абстракция. Правда, когда речь идёт о каком-либо веществе, то химия пользуется этой абстракцией, то есть считает, что вещество истинно чистое, хотя практически берётся вещество с некоторым содержанием примесей. Конечно, химик должен стремиться использовать в своей практике по возможности чистые вещества, содержащие минимальное количество примесей. Следует учитывать, что даже незначительное содержание примесей может существенно изменить химические свойства вещества.

Различия между смесями веществ и сложными веществами
Смесь Сложное вещество
Образуется с помощью физического процесса (смешивание чистых веществ) Образуется с помощью химической реакции (синтез из простых веществ)
Свойства чистых веществ, из которых составлена смесь, остаются неизменными Свойства простых веществ, из которых получено сложное вещество, в последнем не сохраняются
Чистые вещества (простые и сложные) могут находиться в смеси в любом массовом соотношении Элементы, входящие в состав сложного вещества, всегда находятся в определённом массовом отношении
Может быть разделена на составные части (чистые вещества) с помощью физических методов Может быть разложено на составные части (элементы в виде простых веществ) только с помощью химической реакции (анализ)

Ион[править | править код]

Основная статья: Ион

Это заряженная частица, атом или молекула, которая имеет неодинаковое количество протонов и электронов. Если у частицы больше электронов, чем протонов, то она заряжена отрицательно и называется анион. Например — Cl. Если в частице электронов меньше, чем протонов, значит, она заряжена положительно и называется катион. Например — Na+.

Радикал[править | править код]

Это частица (атом или молекула), содержащая один или несколько неспаренных электронов. В большинстве случаев химическая связь образуется при участии двух электронов. Частица, имеющая неспаренный электрон, очень активна и легко образует связи с другими частицами. Поэтому время жизни радикала в среде, как правило, очень мало.

Химическая связь[править | править код]

Удерживает атомы или группы атомов друг около друга. Различают несколько видов химической связи: ионную, ковалентную (полярную и неполярную), металлическую, водородную.

Периодический закон[править | править код]

Открыт Д. И. Менделеевым 1 марта 1869 года. Современная формулировка: Свойства элементов, а также образуемых ими соединений находятся в периодической зависимости от зарядов ядер их атомов.

Химические реакции[править | править код]

Процессы, протекающие в химическом веществе, или в смесях различных веществ, представляют собой химические реакции. При протекании химических реакций всегда образуются новые вещества.

В сущности это процесс изменения структуры молекулы. В результате реакции количество атомов в молекуле может увеличиваться (синтез), уменьшаться (разложение) или оставаться постоянным (изомеризация, перегруппировка). В ходе реакции изменяются связи между атомами и порядок размещения атомов в молекулах.

Химические реакции выявляют и характеризуют химические свойства данного вещества.

Исходные вещества, взятые для проведения химической реакции, называются реагентами, а новые вещества, образующиеся в результате химической реакции, — продуктами реакции. В общем виде химическая реакция изображается так:

Реагенты → Продукты

Химия изучает и описывает эти процессы как в макромасштабе, на уровне макроколичеств веществ, так и в микромасштабе, на атомно-молекулярном уровне. Внешние проявления химических процессов, протекающих в макромасштабе, нельзя непосредственно перенести на микроуровень взаимодействия веществ и однозначно их интерпретировать, однако такие переходы возможны при правильном использовании специальных химических законов, присущих только микрообласти (атомам, молекулам, ионам, взятым в единичных количествах).

Номенклатура[править | править код]

Это свод правил наименования химических соединений. Поскольку общее число известных соединений больше 20 млн, и их число принципиально неограниченно, необходимо пользоваться чёткими правилами при их наименовании, чтобы по названию можно было воспроизвести их структуру. Существует несколько вариантов наименования органических и неорганических соединений, но стандартом считается номенклатура IUPAC.

Современная химия — настолько обширная область естествознания, что многие её разделы по существу представляют собой самостоятельные, хотя и тесно взаимосвязанные научные дисциплины.

По признаку изучаемых объектов (веществ) химию принято делить на неорганическую и органическую. Объяснением сущности химических явлений и установлением их общих закономерностей на основе физических принципов и экспериментальных данных занимается физическая химия, включающая квантовую химию, электрохимию, химическую термодинамику, химическую кинетику. Самостоятельными разделами являются также аналитическая и коллоидная химия (см. ниже перечень разделов).

Технологические основы современных производств излагает химическая технология — наука об экономичных методах и средствах промышленной химической переработки готовых природных материалов и искусственного получения химических продуктов, не встречающихся в окружающей природе.

Сочетание химии с другими смежными естественными науками представляют собой биохимия, биоорганическая химия, геохимия, радиационная химия, фотохимия и др.

Общенаучные основы химических методов разрабатываются в теории познания и методологии науки.

  • Агрохимия
  • Аналитическая химия занимается изучением веществ с целью получить представление об их химическом составе и структуре, в рамках этой дисциплины ведётся разработка экспериментальных методов химического анализа.
  • Биоорганическая химия
  • Биохимия изучает химические вещества, их превращения и явления, сопровождающие эти превращения в живых организмах. Тесно связана с органической химией, химией лекарственных средств, нейрохимией, молекулярной биологией и генетикой.
  • Вычислительная химия
  • Геохимия — наука о химическом составе Земли и планет (космохимия), законах распределения элементов и изотопов, процессах формирования горных пород, почв и природных вод.
  • Квантовая химия
  • Коллоидная химия
  • Компьютерная химия
  • Косметическая химия
  • Космохимия
  • Математическая химия
  • Материаловедение
  • Медицинская химия
  • Металлоорганическая химия
  • Нанохимия
  • Неорганическая химия изучает свойства и реакции неорганических соединений. Чёткой границы между органической и неорганической химии нет, напротив, существуют дисциплины на стыке этих наук, например, металлоорганическая химия.
  • Органическая химия выделяет в качестве предмета изучения вещества, построенные на основе углеродного скелета.
  • Нейрохимия своим предметом имеет изучение медиаторов, пептидов, белков, жиров, сахара и нуклеиновых кислот, их взаимодействия и роли, которую они играют в формировании, становлении и изменении нервной системы.
  • Нефтехимия
  • Общая химия
  • Препаративная химия
  • Радиохимия
  • Супрамолекулярная химия
  • Фармацевтика
  • Физическая химия изучает физический и фундаментальный базис химических систем и процессов. Важнейшие области исследования включают химическую термодинамику, кинетику, электрохимию, статистическую механику и спектроскопию. Физическая химия имеет много общего с молекулярной физикой. Физическая химия предполагает использование инфинитезимального метода. Физическая химия является отдельной дисциплиной от химической физики.
  • Фотохимия
  • Химия высокомолекулярных соединений
  • Химия одноуглеродных молекул
  • Химия полимеров
  • Химия почв
  • Теоретическая химия своей задачей ставит теоретическое обобщение и обоснование знаний химии через фундаментальные теоретические рассуждения (как правило, в области математики или физики).
  • Термохимия
  • Токсикологическая химия
  • Электрохимия
  • Экологическая химия; химия окружающей среды
  • Ядерная химия изучает ядерные реакции и химические последствия ядерных реакций.

Химия 8 класс. Все формулы и определения. Кратко, таблицы, схемы.

«Химия 8 класс. Все формулы и определения»

Ключевые слова: Химия 8 класс. Все формулы и определения, условные обозначения физических величин, единицы измерения, приставки для обозначения единиц измерения, соотношения между единицами, химические формулы, основные определения, кратко, таблицы, схемы.



1. Условные обозначения, названия и единицы измерения
некоторых физических величин, используемых в химии
Физическая величина Обозначение Единица измерения
Время t с
Давление p Па, кПа
Количество вещества ν моль
Масса вещества m кг, г
Массовая доля ω Безразмерная
Молярная масса М кг/моль, г/моль
Молярный объем Vn м3/моль, л/моль
Объем вещества V м3, л
Объемная доля   Безразмерная
Относительная атомная масса Ar Безразмерная
Относительная молекулярная масса Mr Безразмерная
Относительная плотность газа А по газу Б DБ(А) Безразмерная
Плотность вещества р кг/м3, г/см3, г/мл
Постоянная Авогадро NA 1/моль
Температура абсолютная Т К (Кельвин)
Температура по шкале Цельсия t °С (градус Цельсия)
Тепловой эффект химической реакции Q кДж/моль

 

физические величины


2. Соотношения между единицами физических величин

Приставки и соотношения единиц измерения


3. Химические формулы в 8 классе
Химия 8 класс. Все формулы

Схема. Химические формулы в 8 классе


 

4. Основные определения в 8 классе

Химия 8 класс. Все формулы

  • Атом — мельчайшая химически неделимая частица вещества.
  • Химический элемент — определённый вид атомов.
  • Молекула — мельчайшая частица вещества, сохраняющая его состав и химические свойства и состоящая из атомов.
  • Простые вещества — вещества, молекулы которых состоят из атомов одного вида.
  • Сложные вещества — вещества, молекулы которых состоят из атомов разного вида.
  • Качественный состав вещества показывает, из атомов каких элементов оно состоит.
  • Количественный состав вещества показывает число атомов каждого элемента в его составе.
  • Химическая формула — условная запись качественного и количественного состава вещества посредством химических символов и индексов.
  • Атомная единица массы (а.е.м.) — единица измерения массы атома, равная массы 1/12 атома углерода 12С.
  • Моль — количество вещества, в котором содержится число частиц, равное числу атомов в 0,012 кг углерода 12С.
  • Постоянная Авогадро (Na = 6*1023 моль-1) — число частиц, содержащихся в одном моле.
  • Молярная масса вещества (М) — масса вещества, взятого в количестве 1 моль.
  • Относительная атомная масса элемента Аr — отношение массы атома данного элемента m0 к 1/12 массы атома углерода 12С.
  • Относительная молекулярная масса вещества Мr — отношение массы молекулы данного вещества к 1/12 массы атома углерода 12С. Относительная молекулярная масса равна сумме относительных атомных масс химических элементов, образующих соединение, с учётом числа атомов данного элемента.
  • Массовая доля химического элемента ω(Х) показывает, какая часть относительной молекулярной массы вещества X приходится на данный элемент.

АТОМНО-МОЛЕКУЛЯРНОЕ УЧЕНИЕ
1. Существуют вещества с молекулярным и немолекулярным строением.
2. Между молекулами имеются промежутки, размеры которых зависят от агрегатного состояния вещества и температуры.
3. Молекулы находятся в непрерывном движении.
4. Молекулы состоят из атомов.
6. Атомы характеризуются определённой массой и размерами.
При физических явлениях молекулы сохраняются, при химических, как правило, разрушаются. Атомы при химических явлениях перегруппировываются, образуя молекулы новых веществ.

классификация веществ

ЗАКОН ПОСТОЯНСТВА СОСТАВА ВЕЩЕСТВА
Каждое химически чистое вещество молекулярного строения независимо от способа получения имеет постоянный качественный и количественный состав.

ВАЛЕНТНОСТЬ
Валентность — свойство атома химического элемента присоединять или замещать определённое число атомов другого элемента.

валентность

ХИМИЧЕСКАЯ РЕАКЦИЯ
Химическая реакция — явление, в результате которого из одних веществ образуются другие. Реагенты — вещества, вступающие в химическую реакцию. Продукты реакции — вещества, образующиеся в результате реакции.
Признаки химических реакций:
1. Выделение теплоты (света).
2. Изменение окраски.
3. Появление запаха.
4. Образование осадка.
5. Выделение газа.

  • Химическое уравнение — запись химической реакции с помощью химических формул. Показывает, какие вещества и в каком количестве вступают в реакцию и получаются в результате реакции.

ЗАКОН СОХРАНЕНИЯ МАССЫ ВЕЩЕСТВ
Масса веществ, вступивших в химическую реакцию, равна массе веществ, образовавшихся в результате реакции. В результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка.

типы химических реакций


Важнейшие классы неорганических веществ

важнейшие класс неорганических веществ

Воздух. Кислород. Горение

Воздух. Кислород. Горение


Конспект урока «Химия 8 класс. Все формулы и определения».

Следующая тема: «».

 

Химия: уроки, тесты, задания.

  • Первоначальные химические понятия и теоретические представления

    1. Предмет химии
    2. Физические тела и вещества
    3. Чистые вещества и смеси
    4. Разделение смесей. Методы очистки веществ
    5. Атомы и молекулы
    6. Химические элементы. Знаки химических элементов
    7. Закон постоянства состава
    8. Химические формулы
    9. Простые и сложные вещества
    10. Валентность. Степень окисления. Составление формул по валентностям и степеням окисления
    11. Физические и химические явления
    12. Признаки и условия протекания химических реакций
    13. Закон сохранения массы веществ
    14. Уравнения химических реакций
  • Классы неорганических веществ

    1. Классификация веществ
    2. Металлы
    3. Неметаллы
    4. Оксиды
    5. Основания
    6. Кислоты
    7. Амфотерные гидроксиды
    8. Соли
    9. Взаимосвязь между классами неорганических веществ
  • Периодический закон и строение атомов

    1. Периодический закон
    2. Периодическая система
    3. Строение ядра атома
    4. Строение электронной оболочки атома
    5. Периодическая таблица и закономерности изменения свойств химических элементов
  • Строение вещества

    1. Электроотрицательность химических элементов
    2. Типы химической связи
    3. Ионная связь
    4. Ковалентная связь
    5. Металлическая связь
    6. Аморфные и кристаллические вещества
    7. Кристаллические решётки
  • Окислительно-восстановительные реакции

    1. Степень окисления
    2. Окислители и восстановители, окисление и восстановление
  • Растворы

    1. Состав растворов
    2. Растворение. Растворимость
    3. Электролиты и неэлектролиты
    4. Электролитическая диссоциация кислот, оснований и солей
    5. Свойства ионов
    6. Среда растворов. Индикаторы
    7. Реакции ионного обмена. Реакция нейтрализации
  • Классификация химических реакций и закономерности их протекания

    1. Классификация химических реакций по числу и составу вступивших в реакцию и образовавшихся веществ
    2. Классификация химических реакций по тепловому эффекту
    3. Классификация химических реакций, ОВР
    4. Скорость протекания химической реакции. Катализаторы
  • Химия неметаллов

    1. Водород
    2. Кислород
    3. Вода
    4. Галогены. Хлор и его соединения
    5. Сера и её соединения
    6. Азот и его соединения
    7. Фосфор и его соединения
    8. Углерод и его соединения
    9. Кремний и его соединения
  • Химия металлов

    1. Щелочные металлы и их соединения
    2. Щелочноземельные металлы и их соединения
    3. Алюминий и его соединения
    4. Железо и его соединения
  • Органические вещества

    1. Состав и строение органических веществ
    2. Углеводороды. Полимеры
    3. Спирты
    4. Карбоновые кислоты
    5. Жиры
    6. Углеводы
    7. Белки
  • Человек в мире веществ, материалов и химических реакций

    1. Природные источники углеводородов
    2. Химия и пища. Химия и здоровье
  • Методы исследования в химии

    1. Методы научного познания. Химический эксперимент
    2. Получение, собирание и распознавание газов
    3. Обнаружение ионов
  • Расчётные задачи по химии

    1. Физические величины
    2. Относительная атомная и молекулярная массы. Вычисление относительной молекулярной массы вещества
    3. Количество вещества
    4. Вычисление молярной массы вещества
    5. Вычисление количества вещества
    6. Вычисление массовой доли элемента в химическом соединении
    7. Установление простейшей формулы вещества по массовым долям элементов
    8. Простейшие вычисления по уравнениям химических реакций
    9. Вычисления по уравнениям реакций, если исходное вещество содержит определённую долю примесей
    10. Вычисление массовой доли вещества в растворе
    11. Вычисления, связанные с приготовлением растворов с заданной массовой долей растворённого вещества
    12. Комбинированные задачи
  • Класс заполнен на 100 %

  • Химия, 8–9 класс: уроки, тесты, задания

  • Первоначальные химические понятия и теоретические представления

    1. Предмет химии
    2. Физические тела и вещества
    3. Чистые вещества и смеси
    4. Разделение смесей. Методы очистки веществ
    5. Атомы и молекулы
    6. Химические элементы. Знаки химических элементов
    7. Закон постоянства состава
    8. Химические формулы
    9. Простые и сложные вещества
    10. Валентность. Степень окисления. Составление формул по валентностям и степеням окисления
    11. Физические и химические явления
    12. Признаки и условия протекания химических реакций
    13. Закон сохранения массы веществ
    14. Уравнения химических реакций
  • Классы неорганических веществ

    1. Классификация веществ
    2. Металлы
    3. Неметаллы
    4. Оксиды
    5. Основания
    6. Кислоты
    7. Амфотерные гидроксиды
    8. Соли
    9. Взаимосвязь между классами неорганических веществ
  • Периодический закон и строение атомов

    1. Периодический закон
    2. Периодическая система
    3. Строение ядра атома
    4. Строение электронной оболочки атома
    5. Периодическая таблица и закономерности изменения свойств химических элементов
  • Строение вещества

    1. Электроотрицательность химических элементов
    2. Типы химической связи
    3. Ионная связь
    4. Ковалентная связь
    5. Металлическая связь
    6. Аморфные и кристаллические вещества
    7. Кристаллические решётки
  • Окислительно-восстановительные реакции

    1. Степень окисления
    2. Окислители и восстановители, окисление и восстановление
  • Растворы

    1. Состав растворов
    2. Растворение. Растворимость
    3. Электролиты и неэлектролиты
    4. Электролитическая диссоциация кислот, оснований и солей
    5. Свойства ионов
    6. Среда растворов. Индикаторы
    7. Реакции ионного обмена. Реакция нейтрализации
  • Классификация химических реакций и закономерности их протекания

    1. Классификация химических реакций по числу и составу вступивших в реакцию и образовавшихся веществ
    2. Классификация химических реакций по тепловому эффекту
    3. Классификация химических реакций, ОВР
    4. Скорость протекания химической реакции. Катализаторы
  • Химия неметаллов

    1. Водород
    2. Кислород
    3. Вода
    4. Галогены. Хлор и его соединения
    5. Сера и её соединения
    6. Азот и его соединения
    7. Фосфор и его соединения
    8. Углерод и его соединения
    9. Кремний и его соединения
  • Химия металлов

    1. Щелочные металлы и их соединения
    2. Щелочноземельные металлы и их соединения
    3. Алюминий и его соединения
    4. Железо и его соединения
  • Органические вещества

    1. Состав и строение органических веществ
    2. Углеводороды. Полимеры
    3. Спирты
    4. Карбоновые кислоты
    5. Жиры
    6. Углеводы
    7. Белки
  • Человек в мире веществ, материалов и химических реакций

    1. Природные источники углеводородов
    2. Химия и пища. Химия и здоровье
  • Методы исследования в химии

    1. Методы научного познания. Химический эксперимент
    2. Получение, собирание и распознавание газов
    3. Обнаружение ионов
  • Расчётные задачи по химии

    1. Физические величины
    2. Относительная атомная и молекулярная массы. Вычисление относительной молекулярной массы вещества
    3. Количество вещества
    4. Вычисление молярной массы вещества
    5. Вычисление количества вещества
    6. Вычисление массовой доли элемента в химическом соединении
    7. Установление простейшей формулы вещества по массовым долям элементов
    8. Простейшие вычисления по уравнениям химических реакций
    9. Вычисления по уравнениям реакций, если исходное вещество содержит определённую долю примесей
    10. Вычисление массовой доли вещества в растворе
    11. Вычисления, связанные с приготовлением растворов с заданной массовой долей растворённого вещества
    12. Комбинированные задачи
  • Класс заполнен на 100 %

  • Разное

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о