Сканер сетчатки глаза – Искусственный интеллект Google научился обнаруживать сердечно-сосудистые заболевания с помощью сканирования сетчатки глаза

alexxlab
alexxlab
21.04.2020

Содержание

Аутентификация по радужной оболочке глаза — Википедия

Аутентификация по радужной оболочке глаза — одна из биометрических технологий, используемая для проверки подлинности личности.

Детальное изображение радужной оболочки

Тип биометрической технологии, который рассматривается в данной статье, использует физиологический параметр — уникальность радужной оболочки глаза. На данный момент этот тип является одним из наиболее эффективных способов для идентификации и дальнейшей аутентификации личности [1].

Несмотря на то, что биометрические технологии (в частности, использование радужной оболочки глаза для идентификации человека) только начинают набирать популярность, первые открытия в этой области были совершены ещё в конце тридцатых годов прошлого века.

  • Первым о том, что человеческий глаз и его радужную оболочку можно использовать для распознавания личности, задумался американский глазной хирург, Франк Бурш, ещё в 1936 году [2] .
  • Но его идею и разработки удалось запатентовать только в 1987 году. Сделал это уже не сам Бурш, а офтальмологи, не имеющие собственных разработок — Леонард Флом и Аран Сафир
    [2].
  • В 1989 году Л. Флом и А. Сафир решили обратиться за помощью к Джону Даугману, для того, чтобы тот разработал теорию и алгоритмы распознавания. Впоследствии, именно Джона Даугмана принято считать родоначальником этого метода биометрической аутентификации [2].
  • В 1990 году Джон Даугман впервые разработал практический метод кодирования структур радужной оболочки. Запатентован метод был немного позже, в 1993 году [2].
  • На этом история развития биометрической аутентификации по радужной оболочке не заканчивается. Начиная с 2002 года Даугман выпустил ещё несколько статей, каждая из которых более полно раскрывает и развивает данную технологию. Опубликованные статьи: Epigenetic randomness, complexity, and singularity of human iris patterns (2001), Gabor wavelets and statistical pattern recognition (2002), The importance of being random: Statistical principles of iris recognition (2003),
    Probing the uniqueness and randomness of IrisCodes: Results from 200 billion iris pair comparisons (2006), New methods in iris recognition (2007), Information Theory and the IrisCode (2015).

Радужная оболочка как биометрический параметр[править | править код]

В данном случае в качестве физиологического параметра рассматривается радужная оболочка — круглая пластинка с хрусталиком в центре, одна из трёх составляющих сосудистой (средней) оболочки глаза.

Строение человеческого глаза

Находится радужная оболочка между роговицей и хрусталиком и выполняет функцию своеобразной естественной диафрагмы, регулирующей поступление света в глаз. Радужная оболочка пигментирована, и именно количество пигмента определяет цвет глаз человека [3] .

По своей структуре радужная оболочка состоит из эластичной материи — трабекулярной сети. Это сетчатое образование, которое сформировывается к концу восьмого месяца беременности. Трабекулярная сеть состоит из углублений, гребенчатых стяжек, борозд, колец, морщин, веснушек, сосудов и других черт. Благодаря такому количеству составляющих «узор» сети довольно случаен, что ведёт к большой вероятности уникальности радужной оболочки. Даже у близнецов этот параметр не совпадает полностью

[4].

Несмотря на то, что радужная оболочка глаза может менять свой цвет вплоть до полутора лет с момента рождения, узор траберкулярной сети остаётся неизменным в течение всей жизни человека. Исключением считается получение серьёзной травмы и хирургическое вмешательство [4].

Благодаря своему расположению радужная оболочка является довольно защищённой частью органа зрения, что делает её прекрасным биометрическим параметром.

Большинство работающих в настоящее время систем и технологий идентификации по радужной оболочке глаза основаны на принципах, предложенных Дж. Даугманом в статье «High confidence visual recognition of persons by a test of statistical independence»[5] .

Полярная система координат

Процесс распознавания личности с помощью радужной оболочки глаза можно условно разделить на три основных этапа: получение цифрового изображения, сегментация и параметризация. Ниже будет рассмотрен каждый из этих этапов более подробно.

Получение изображения[править | править код]

Процесс аутентификации начинается с получения детального изображения глаза человека. Изображение для дальнейшего анализа стараются сделать в высоком качестве, но это не обязательно. Радужная оболочка настолько уникальный параметр, что даже нечёткий снимок даст достоверный результат. Для этой цели используют монохромную CCD камеру с неяркой подсветкой, которая чувствительна к инфракрасному излучению. Обычно делают серию из нескольких фотографий из-за того, что зрачок чувствителен к свету и постоянно меняет свой размер. Подсветка ненавязчива, а серия снимков делается буквально за несколько секунд. Затем из полученных фотографий выбирают одну или несколько и приступают к сегментации

[6].

Сегментация[править | править код]

Сегментация занимается разделением изображения внешней части глаза на отдельные участки (сегменты). В процессе сегментации на полученной фотографии прежде всего находят радужную оболочку, определяют внутреннюю границу (около зрачка) и внешнюю границу (граница со склерой). После этого находят границы верхнего и нижнего века, а также исключают случайное наложение ресниц или блики (от очков, например)

[7] .

Точность, с которой определяются границы радужки, даже если они частично скрыты веками, очень важна. Любая неточность в обнаружении, моделировании и дальнейшем представлении радужки могут привести к дальнейшим сбоям и несоответствиям [7].

После определение границ изображение радужки необходимо нормализовать. Это не совсем очевидный, но необходимый шаг, призванный компенсировать изменения размеров зрачка. В частных случаях нормализация представляет собой переход в полярную систему координат. Применил и описал это в своих ранних работах Джон Даугман [5]. После нормализации при помощи псевдо-полярных координат выделенная область изображения переходит в прямоугольник, и происходит оценка радиуса и центра радужки[8].

Параметризация[править | править код]

В ходе параметризации радужной оболочки из нормализованного изображения выделяют контрольную область. К каждой точке выбранной области применяют двухмерные волны Габора (можно применять и другие фильтры, но принцип остаётся таким же) для того, чтобы извлечь фазовую информацию. Несомненным плюсом фазовой составляющей является то, что она, в отличие от амплитудной информации, не зависит от контраста изображения и освещения [9].

Полученная фаза обычно квантуется 2 битами, но можно использовать и другое количество. Итоговая длина описания радужной оболочки, таким образом, зависит от количества точек, в которых находят фазовую информацию, и количества битов, необходимых для кодирования. В итоге мы получаем шаблон радужной оболочки, который побитно будет сверяться с другими шаблонами в процессе аутентификации. Мерой, с помощью которой определяется степень различия двух радужных оболочек, является расстояние Хэмминга

[9].

Некоторые страны уже начали разрабатывать программу, частью которого будет являться биометрическая аутентификация по радужной оболочке глаза. Планируется, что с помощью этого нововведения будет решена проблема поддельных паспортов и других удостоверений личности. Второй целью является автоматизация прохождения паспортного контроля и таможенного досмотра при въезде в страну с помощью биометрических паспортов[10].

В Великобритании с 2004 года действовал не менее сложный по реализации проект — IRIS (Iris Recognition Immigration System). В рамках этой программы около миллиона туристов из-за рубежа, часто путешествующие в Великобританию, могли не предоставлять свои документы в аэропортах для удостоверения личности. Вместо этого специальная видеокамера сверяла их радужную оболочку глаза с уже сформированной базой. В 2013 году от этого проекта отказались в пользу биометрических паспортов, куда заносится информация и о радужной оболочке глаза

[10].

Для того, чтобы та или иная характеристика человека была признана биометрическим параметром, она должна соответствовать пяти специально разработанным критериям: всеобщность, уникальность, постоянство, измеряемость  и приемлемость.

Всеобщность радужной оболочки не вызывает сомнения. Также из клинических исследований выявлена её уникальность и стабильность [11]. Что касается измеряемости, то этот пункт подтверждён  одним только существованием статей и публикаций Дж. Даугмана [5][12][13]. Последний пункт, вопрос о приемлемости, всегда будет открытым, так как зависит от мнения общества.

Таблица сравнения биометрических методов аутентификации, где H — High, M — Medium, L — Low [14]

:

Название Всеобщность Уникальность Постоянство Измеряемость Приемлемость
Радужная оболочка H H H M L
Сетчатка H H M L L
Отпечатки пальцев M H H M M

На данный момент ещё не создана биометрическая технология, которая полностью соответствовала бы всем пяти пунктам. Но радужная оболочка является одним из немногих параметров, которые отвечают большинству[15].

Точность метода[править | править код]

В биометрии при расчёте точности метода учитываются ошибки первого и второго рода (FAR и FRR) [16].

FAR (False Acceptance Rate) — вероятность ложного допуска объекта.

FRR (False Rejection Rate) — вероятность ложного отклонения объекта.

Эти два понятия тесно связаны, так как уменьшение одной ошибки ведёт к увеличению другой. Поэтому разработчики биометрических систем стараются прийти к некому балансу между FAR и FRR [17].

Одним из методов определения точности системы, который задействует ошибки первого и второго рода, является метод построения ROC-кривой.

ROC-кривая — это графическое представления зависимости между характеристиками FAR и FRR при варьировании порога чувствительности (threshhold) [18]. Порог чувствительности определяет, как близко должен находиться текущий образец к шаблону, чтобы считать их совпадающими. Таким образом, если выбран небольшой порог, то возрастает количество ложных допусков, но уменьшается вероятность ложного отклонения объекта. Соответственно, при выборе высокого порога всё происходит наоборот

[17].

Иногда вводят новый параметр – EER.

EER (Equal Error Rate) — величина, которая характеризует уровень ошибок биометрического метода, при котором значения FAR и FRR равны . Чем меньше этот параметр, тем точнее система. Значение ERR узнают с помощью выше описанной ROC-кривой [19].

Что касается точности, непосредственно, аутентификации по радужной оболочке, то хорошим источник служит книга «Handbook of Iris Recognition». В данной работе описан эксперимент, в котором сравнивали несколько видов биометрических технологий. Исходя из этих исследований, точность аутентификации по радужной оболочке достигает 90% [20].

В ходе другой работы, выяснили, что значение FAR данного метода при определённых условиях может принимать значения от 1% и ниже, а значение FRR неизменно и стремится к нулю (0.00001%) [21].

В свою очередь, значения FAR и FRR непосредственно зависят от процессов получения и обработки изображения радужной оболочки. Большую роль в этом играют фильтры, применяемые в процессе сегментации. Из таблицы, которая представлена ниже, можно увидеть, как смена одного фильтра влияет на конечный результат

[22].

Таблица параметров FAR(%), FRR(%) и EER(%) в зависимости от выбора фильтра[22]:

Название FAR(%) FRR(%) EER(%)
Фильтр Габора (Gabor) 0.001 0.12 0.11
Фильтр Добеши (Daubechies) 0.001 2.98 0.2687
Фильтр Хаара (Haar) 0.0 17.75 2.9

Сравнение с аутентификацией по сетчатке[править | править код]

Чаще всего люди путают такие физиологические параметры, как сетчатка и радужная оболочка глаза. Ещё чаще они объединяют два понятия в одно. Это огромное заблуждение, так как метод аутентификации по сетчатке включает в себя изучение глазного дна. Из-за длительности этого процесса и большого размера установки данный вид аутентификации сложно назвать общедоступным и удобным. В этом биометрическая аутентификация по сетчатке проигрывает аутентификации по радужной оболочке[23].

  1. ↑ Р. М. Болл и др., 2007, p. 23: «Эти биометрические параметры считаются наиболее совершенными, и ожидается, что в скором времени они будут широко применяться.».
  2. 1 2 3 4 Khalid Saeed et al, 2012, p. 44.
  3. ↑ Алексеев В.Н. и др., 2008, p. 18.
  4. 1 2 Anil Jain et al, 2006, p. 105 — 106.
  5. 1 2 3 J. Daugman, 1993.
  6. ↑ Anil Jain et al, 2011, p. 144.
  7. 1 2 J. Daugman, 2007, p. 1167.
  8. ↑ Khalid Saeed et al, 2012, p. 52 — 53.
  9. 1 2 J. Daugman, 2004, p. 22 — 23.
  10. 1 2 J. Daugman, 2007, january, p. 1927.
  11. ↑ Р. М. Болл и др., 2007, p. 60.
  12. ↑ J. Daugman, 2004.
  13. ↑ J. Daugman, 2007.
  14. ↑ Anil Jain et al, 2004.
  15. ↑ Р. М. Болл и др., 2007, p. 22.
  16. ↑ Rajesh M. et al, 2014, p. 3.
  17. 1 2 Anil Jain et al, 2004, p. 6.
  18. ↑ A. J. Mansfield et al, 2002, p. 7 — 8.
  19. ↑ Rajesh M. et al, 2014, p. 5.
  20. ↑ Mark J. Burge et al, 2013.
  21. ↑ Dr. Chander Kant et al, 2011.
  22. 1 2 José Ruiz-Shulcloper et al, 2008, p. 91 — 92.
  23. ↑ Р. М. Болл и др., 2007, p. 23.
  • L. Flom, A. Safir US Patent 4641349
  • Р. М. Болл, Дж. Х. Коннел, Ш. Панканти, Н. К. Ратха, Э. У. Сеньор. Руководство по биометрии. — М.: Техносфера, 2007. — С. 20 — 63. — 368 с. — ISBN 978-5-94836-109-3.
  • Khalid Saeed, Tomomasa Nagashima. Chapter 3. Iris Pattern Recognition with a New Mathematical Model to Its Rotation Detection // Biometrics and Kansei Engineering. — Springer Science & Business Media, 2012. — P. 43 — 65. — 276 p. — ISBN 978-1-461-45607-0.
  • Anil Jain, Arun A. Ross, Karthik Nandakumar. Chapter 4 Iris Recognition // Introduction to Biometrics.. — Springer Science & Business Media, 2011. — P. 141-175. — 276 p. — ISBN 978-0-387-77326-1.
  • Rajesh M. Bodade, Sanjay Talbar. Introduction to Iris Recognition // Iris Analysis for Biometric Recognition Systems. — Springer, 2014. — P. 3 — 5. — 109 p. — ISBN 978-8-132-21853-1.
  • Anil Jain, Ruud Bolle, Sharath Pankanti. Recognising Persons by Their Iris Patterns // Biometrics: Personal Identification in Networked Society. — Springer Science & Business Media, 2006. — P. 102 — 122. — 411 p.
  • José Ruiz-Shulcloper, Walter Kropatsch. An Alternative Image Representation Model for Iris Recognition // Progress in Pattern Recognition, Image Analysis and Applications. — Springer Science & Business Media, 2008. — P. 86 — 93. — 814 p.
  • A. J. Mansfield, J. L. Wayman. Definitions // Best Practices in Testing and Reporting Performance of Biometric Devices: Version 2.01. — Centre for Mathematics and Scientific Computing, National Physical Laboratory, 2002. — P. 7 — 8. — 32 p.
  • Mark J. Burge, Kevin Bowyer. Fusion of Face and Iris Biometrics // Handbook of Iris Recognition. — Springer-Verlag London, 2013. — P. 234. — 399 p.
  • J. Daugman. High confidence visual recognition of persons by a test of statistical independence (англ.) // IEEE Transactions on Pattern Analysis and Machine Intelligence. — 1993. — Vol. 15, no. 11. — P. 1148 — 1161.
  • J. Daugman. How iris recognition works (англ.) // IEEE Transactionson Circuits and Systems for Video Technology. — 2004. — Vol. 14, no. 1. — P. 21 — 30.
  • J. Daugman. New Methods in Iris Recognition (англ.) // IEEE Trans. Systems, Man, and Cybernetics. — 2007. — Vol. 37, no. 5. — P. 1167 — 1175.
  • J. Daugman. Probing the Uniqueness and Randomness of IrisCodes: Results From 200 Billion Iris Pair Comparisons (англ.) // IEEE Transactionson Circuits and Systems for Video Technology. — 2007, january. — Vol. 94, no. 11. — P. 1927 — 1935.
  • Anil Jain, Arun Ross and Salil Prabhakar. An Introduction to Biometric Recognition (англ.) // IEEE Transactions on Circuits and Systems for Video Technology. — 2004. — Vol. 14, no. 1. — P. 4 — 20.
  • Dr. Chander Kant, Sachin Gupta. Iris Recognition: The Safest Biometric (англ.) // An International Journal of Engineering Sciences ISSN. — 2011. — Vol. 4. — P. 265 — 273.
  • Алексеев В.Н., Астахов Ю.С., Басинский С.Н. Глава 2. Анатомия органа зрения // Офтальмология: Учебник для студ. мед. вузов / Е.А.Егоров. — М.: ГЭОТАР-Медиа, 2008. — С. 12 — 29. — 240 с.
  • Павельева Е. А., Крылов А. С. Алгоритм сравнения изображений радужной оболочки глаза на основе ключевых точек (рус.) // Информатика и её применения. — 2011. — Т. 5, № 1. — С. 68 — 72.

Биометрические системы аутентификации — Википедия

Биометрические системы аутентификации — системы аутентификации, использующие для удостоверения личности людей их биометрические данные.

Биометрическая аутентификация — процесс доказательства и проверки подлинности заявленного пользователем имени, через предъявление пользователем своего биометрического образа и путём преобразования этого образа в соответствии с заранее определённым протоколом аутентификации.

Не следует путать данные системы с системами биометрической идентификации, каковыми являются, к примеру системы распознавания лиц водителей[1] и биометрические средства учёта рабочего времени[2]. Биометрические системы аутентификации работают в активном, а не пассивном режиме и почти всегда подразумевают авторизацию. Хотя данные системы не идентичны системам авторизации, они часто используются совместно (например, в дверных замках с проверкой отпечатка пальца).

Различные системы контролируемого обеспечения доступа можно разделить на три группы в соответствии с тем, что человек собирается предъявлять системе:

  1. Парольная защита. Пользователь предъявляет секретные данные (например, PIN-код или пароль).
  2. Использование ключей. Пользователь предъявляет свой персональный идентификатор, являющийся физическим носителем секретного ключа. Обычно используются пластиковые карты с магнитной полосой и другие устройства.
  3. Биометрия. Пользователь предъявляет параметр, который является частью его самого. Биометрический класс отличается тем, что идентификации подвергаются биологические особенности человека — его индивидуальные характеристики (рисунок папиллярного узора[3], отпечатки пальцев, термограмму лица и т. д.).

Биометрические системы доступа являются очень удобными для пользователей. В отличие от паролей и носителей информации, которые могут быть потеряны, украдены, скопированы, Биометрические системы доступа основаны на человеческих параметрах, которые всегда находятся вместе с ними, и проблема их сохранности не возникает. Потерять их почти невозможно. Также невозможна передача идентификатора третьим лицам [источник не указан 2227 дней]. Впрочем, можно насильственно изъять параметры. В кинофильмах и анимации было неоднократно показано, что глаза и руки можно ампутировать (или использовать пользователя как заложника-токен). Можно так же изготовить копии, в том числе и скрытно считав параметры. Однако многие методы имеют защиту от использования мертвого органа или копии. Так, многие сканеры радужной оболочки имеют так же инфракрасный сканер, определяющие теплый ли глаз/макет или нет (можно обойти, нагрев глаз или использовать линзы с рисунком). Проводятся исследования возможности использования кратковременной вспышки и сканирования моторной реакции зрачка, однако метод имеет потенциальные проблемы при использовании офтальмологических препаратов и наркотическом опьянении[4]. Сканеры отпечатков пальцев могут комбинировать емкостное и ультразвуковое (защищает от копии распечатанной струйным принтером токопроводящими чернилами) сканирование (можно обмануть с помощью 3D принтера и токопроводящего материала). Надежнее всего здесь метод сканирования сетчатки глаза, изготовить макет очень сложно, после смерти же сосуды сетчатки перестают накачиваться кровью, и сканер способен это определить. Полностью насильственное использование заложника потенциально можно определить с помощью анализа поведения на видео, например, при помощи нейронных сетей.

Обзор биометрических методов аутентификации[править | править код]

В настоящее время широко используется большое количество методов биометрической аутентификации, которые делятся на два класса.

Критерии для биометрических параметров. Они обязаны соответствовать следующим пунктам[7]:

  1. Всеобщность: Данный признак должен присутствовать у всех людей без исключения.
  2. Уникальность: Биометрия отрицает существование двух людей с одинаковыми физическими и поведенческими параметрами.
  3. Постоянство: для корректной аутентификации необходимо постоянство во времени.
  4. Измеримость: специалисты должны иметь возможность измерить признак каким-либо устройством для дальнейшего занесения в базу данных.
  5. Приемлемость: общество не должно быть против сбора и измерения биометрического параметра.

Статические методы[править | править код]

Аутентификация по отпечатку пальца[править | править код]
Биометрический терминал учета рабочего времени PERCo CR11 с оптоволоконным сканером отпечатков пальцев.

Идентификация по отпечаткам пальцев — самая распространенная биометрическая технология аутентификации пользователей. Метод использует уникальность рисунка папиллярных узоров на пальцах людей. Отпечаток, полученный с помощью сканера, преобразовывается в цифровой код, а затем сравнивается с ранее введенными наборами эталонов. Преимущества использования аутентификации по отпечаткам пальцев — легкость в использовании, удобство и надежность. Универсальность этой технологии позволяет применять её в любых сферах и для решения любых и самых разнообразных задач, где необходима достоверная и достаточно точная идентификация пользователей.

Для получения сведений об отпечатках пальцев применяются специальные сканеры. Чтобы получить отчётливое электронное представление отпечатков пальцев, используют достаточно специфические методы, так как отпечаток пальца слишком мал, и очень трудно получить хорошо различимые папиллярные узоры.

Обычно применяются три основных типа сканеров отпечатков пальцев: ёмкостные, прокатные, оптические. Самые распространенные и широко используемые это оптические сканеры, но они имеют один серьёзный недостаток. Оптические сканеры неустойчивы к муляжам и мертвым пальцам, а это значит, что они не столь эффективны, как другие типы сканеров. Так же в некоторых источниках сканеры отпечатков пальцев делят на 3 класса по их физическим принципам: оптические, кремниевые, ультразвуковые[8][неавторитетный источник?][источник не указан 2227 дней].

Аутентификация по радужной оболочке глаза[править | править код]

Данная технология биометрической аутентификации личности использует уникальность признаков и особенностей радужной оболочки человеческого глаза. Радужная оболочка — тонкая подвижная диафрагма глаза у позвоночных с отверстием (зрачком) в центре; расположена за роговицей, между передней и задней камерами глаза, перед хрусталиком. Радужная оболочка образовывается ещё до рождения человека, и не меняется на протяжении всей жизни. Радужная оболочка по текстуре напоминает сеть с большим количеством окружающих кругов и рисунков, которые могут быть измерены компьютером, рисунок радужки очень сложен, это позволяет отобрать порядка 200 точек, с помощью которых обеспечивается высокая степень надежности аутентификации. Для сравнения, лучшие системы идентификации по отпечаткам пальцев используют 60-70 точек.

Технология распознавания радужной оболочки глаза была разработана для того, чтобы свести на нет навязчивость сканирования сетчатки глаза, при котором используются инфракрасные лучи или яркий свет. Ученые также провели ряд исследований, которые показали, что сетчатка глаза человека может меняться со временем, в то время как радужная оболочка глаза остается неизменной. И самое главное, что невозможно найти два абсолютно идентичных рисунка радужной оболочки глаза, даже у близнецов. Для получения индивидуальной записи о радужной оболочке глаза черно-белая камера делает 30 записей в секунду. Еле различимый свет освещает радужную оболочку, и это позволяет видеокамере сфокусироваться на радужке. Одна из записей затем оцифровывается и сохраняется в базе данных зарегистрированных пользователей. Вся процедура занимает несколько секунд, и она может быть полностью компьютеризирована при помощи голосовых указаний и автофокусировки. Камера может быть установлена на расстоянии от 10 см до 1 метра, в зависимости от сканирующего оборудования. Термин «сканирование» может быть обманчивым, так как в процессе получения изображения проходит не сканирование, а простое фотографирование. Затем полученное изображение радужки преобразуется в упрощенную форму, записывается и хранится для последующего сравнения. Очки и контактные линзы, даже цветные, не воздействуют на качество аутентификации[9].[неавторитетный источник?][источник не указан 2227 дней].

Стоимость всегда была самым большим сдерживающим моментом перед внедрением технологии, но сейчас системы идентификации по радужной оболочке становятся более доступными для различных компаний. Сторонники технологии заявляют о том, что распознавание радужной оболочки глаза очень скоро станет общепринятой технологией идентификации в различных областях.

Аутентификация по сетчатке глаза[править | править код]

Метод аутентификации по сетчатке глаза получил практическое применение примерно в середине 50-х годов прошлого века. Именно тогда была установлена уникальность рисунка кровеносных сосудов глазного дна (даже у близнецов данные рисунки не совпадают). Для сканирования сетчатки используется инфракрасное излучение низкой интенсивности, направленное через зрачок к кровеносным сосудам на задней стенке глаза. Из полученного сигнала выделяется несколько сотен особых точек, информация о которых сохраняется в шаблоне.

К недостаткам подобных систем следует в первую очередь отнести психологический фактор: не всякому человеку приятно смотреть в непонятное темное отверстие, где что-то светит в глаз. К тому же, подобные системы требуют чёткого изображения и, как правило, чувствительны к неправильной ориентации сетчатки. Поэтому требуется смотреть очень аккуратно, а наличие некоторых заболеваний (например, катаракты) может препятствовать использованию данного метода. Сканеры для сетчатки глаза получили большое распространение для доступа к сверхсекретным объектам, поскольку обеспечивают одну из самых низких вероятностей ошибки первого рода (отказ в доступе для зарегистрированного пользователя) и почти нулевой процент ошибок второго рода[10].

Аутентификация по геометрии руки[править | править код]

В этом биометрическом методе для аутентификации личности используется форма кисти руки. Из-за того, что отдельные параметры формы руки не являются уникальными, приходится использовать несколько характеристик. Сканируются такие параметры руки, как изгибы пальцев, их длина и толщина, ширина и толщина тыльной стороны руки, расстояние между суставами и структура кости. Также геометрия руки включает в себя мелкие детали (например, морщины на коже). Хотя структура суставов и костей являются относительно постоянными признаками, но распухание тканей или ушибы руки могут исказить исходную структуру. Проблема технологии: даже без учёта возможности ампутации, заболевание под названием «артрит» может сильно помешать применению сканеров.

С помощью сканера, который состоит из камеры и подсвечивающих диодов (при сканировании кисти руки, диоды включаются по очереди, это позволяет получить различные проекции руки), строится трёхмерный образ кисти руки. Надежность аутентификации по геометрии руки сравнима с аутентификацией по отпечатку пальца.

Системы аутентификации по геометрии руки широко распространены, что является доказательством их удобства для пользователей. Использование этого параметра привлекательно по ряду причин. Процедура получения образца достаточно проста и не предъявляет высоких требований к изображению. Размер полученного шаблона очень мал, несколько байт. На процесс аутентификации не влияют ни температура, ни влажность, ни загрязнённость. Подсчеты, производимые при сравнении с эталоном, очень просты и могут быть легко автоматизированы.

Системы аутентификации, основанные на геометрии руки, начали использоваться в мире в начале 70-х годов[11].[неавторитетный источник?][источник не указан 2227 дней]

Аутентификация по геометрии лица[править | править код]

Биометрическая аутентификация человека по геометрии лица довольно распространенный способ идентификации и аутентификации. Техническая реализация представляет собой сложную математическую задачу. Обширное использование мультимедийных технологий, с помощью которых можно увидеть достаточное количество видеокамер на вокзалах, аэропортах, площадях, улицах, дорогах и других местах скопления людей, стало решающим в развитии этого направления. Для построения трёхмерной модели человеческого лица, выделяют контуры глаз, бровей, губ, носа, и других различных элементов лица, затем вычисляют расстояние между ними, и с помощью него строят трёхмерную модель. Для определения уникального шаблона, соответствующего определённому человеку, требуется от 12 до 40 характерных элементов. Шаблон должен учитывать множество вариаций изображения на случаи поворота лица, наклона, изменения освещённости, изменения выражения. Диапазон таких вариантов варьируется в зависимости от целей применения данного способа (для идентификации, аутентификации, удаленного поиска на больших территориях и т. д.). Некоторые алгоритмы позволяют компенсировать наличие у человека очков, шляпы, усов и бороды[11].[неавторитетный источник?][источник не указан 2227 дней]

Аутентификация по термограмме лица[править | править код]

Способ основан на исследованиях, которые показали, что термограмма лица уникальна для каждого человека. Термограмма получается с помощью камер инфракрасного диапазона. В отличие от аутентификации по геометрии лица, данный метод различает близнецов. Использование специальных масок, проведение пластических операций, старение организма человека, температура тела, охлаждение кожи лица в морозную погоду не влияют на точность термограммы. Из-за невысокого качества аутентификации, метод на данный момент не имеет широкого распространения[12].

Динамические методы[править | править код]

Аутентификация по голосу[править | править код]

Биометрический метод аутентификации по голосу, характеризуется простотой в применении. Данному методу не требуется дорогостоящая аппаратура, достаточно микрофона и звуковой платы. В настоящее время данная технология быстро развивается, так как этот метод аутентификации широко используется в современных бизнес-центрах. Существует довольно много способов построения шаблона по голосу. Обычно, это разные комбинации частотных и статистических характеристик голоса. Могут рассматриваться такие параметры, как модуляция, интонация, высота тона, и т. п.

Основным и определяющим недостатком метода аутентификации по голосу — низкая точность метода. Например, человека с простудой система может не опознать. Важную проблему составляет многообразие проявлений голоса одного человека: голос способен изменяться в зависимости от состояния здоровья, возраста, настроения и т. д. Это многообразие представляет серьёзные трудности при выделении отличительных свойств голоса человека. Кроме того, учёт шумовой компоненты является ещё одной важной и не решенной проблемой в практическом использовании аутентификации по голосу. Так как вероятность ошибок второго рода при использовании данного метода велика (порядка одного процента), аутентификация по голосу применяется для управления доступом в помещениях среднего уровня безопасности, такие как компьютерные классы, лаборатории производственных компаний и т. д.[13]

Аутентификация по рукописному почерку[править | править код]

Метод биометрической аутентификации по рукописному почерку основывается на специфическом движении человеческой руки во время подписания документов. Для сохранения подписи используют специальные ручки или восприимчивые к давлению поверхности. Этот вид аутентификации человека использует его подпись. Шаблон создается в зависимости от необходимого уровня защиты. Обычно выделяют два способа обработки данных о подписи:

  • Анализ самой подписи, то есть используется просто степень совпадения двух картинок.
  • Анализ динамических характеристик написания, то есть для аутентификации строится свертка, в которую входит информация по подписи, временными и статистическими характеристиками её написания.

Комбинированная биометрическая система аутентификации[править | править код]

Комбинированная (мультимодальная) биометрическая система аутентификации применяет различные дополнения для использования нескольких типов биометрических характеристик, что позволяет соединить несколько типов биометрических технологий в системах аутентификации в одной. Это позволяет удовлетворить самые строгие требования к эффективности системы аутентификации. Например, аутентификация по отпечаткам пальцев может легко сочетаться со сканированием руки. Такая структура может использовать все виды биометрических данных человека и может применяться там, где приходится форсировать ограничения одной биометрической характеристики. Комбинированные системы являются более надежными с точки зрения возможности имитации биометрических данных человека, так как труднее подделать целый ряд характеристик, чем фальсифицировать один биометрический признак[14].[неавторитетный источник?][источник не указан 2227 дней]

  1. ↑ Российский биометрический портал
  2. ↑ Российский биометрический портал
  3. ↑ радужная оболочка глаза
  4. ↑ Biometrics Researcher Asks: Is That Eyeball Dead or Alive? (англ.), IEEE Spectrum: Technology, Engineering, and Science News. Дата обращения 17 апреля 2017.
  5. ↑ Биометрические системы безопасности. (неопр.) (недоступная ссылка). Дата обращения 21 ноября 2011. Архивировано 15 февраля 2012 года.
  6. Р. М. Болл, Дж. Х. Коннел, Ш. Панканти, Н. К. Ратха, Э. У. Сеньор. Руководство по биометрии. — М.: Техносфера, 2007. — С. 23. — 368 с. — ISBN 978-5-94836-109-3.
  7. Р. М. Болл, Дж. Х. Коннел, Ш. Панканти, Н. К. Ратха, Э. У. Сеньор. Руководство по биометрии. — М.: Техносфера, 2007. — С. 22. — 368 с. — ISBN 978-5-94836-109-3.
  8. ↑ Идентификация по отпечаткам пальцев. Часть 1. Виталий Задорожный (неопр.) (недоступная ссылка). Дата обращения 22 ноября 2011. Архивировано 16 сентября 2011 года.
  9. ↑ Компоненты биометрических систем
  10. ↑ [Шаров В. Биометрические методы компьютерной безопасности]
  11. 1 2 Попов М. Биометрические системы безопасности. (неопр.) (недоступная ссылка). Дата обращения 21 ноября 2011. Архивировано 15 февраля 2012 года.
  12. ↑ [Климакин С. П., Петруненков А. А., Черномордик О. М. Эра биометрики.]
  13. ↑ Шаров В. Биометрические методы компьютерной безопасности.
  14. ↑ биометрических систем. (недоступная ссылка)

Вредно ли сканирование сетчатки глаза. Методы аутентификации по сетчатке глаза

В некоторых системах идентификации в качестве ключа используется глаз человека. Существует две разновидности этих систем, использующие разные идентификаторы. В первом случае в качестве «носителя» идентификационного кода применяется рисунок капилляров (кровеносных сосудов) на сетчатке (дне) глаза, а во втором — узор радужной оболочки глаза.
Для начала рассмотрим способ идентификации по узору кровеносных сосудов, расположенных на поверхности глазного дна (сетчатке). Сетчатка расположена глубоко внутри глаза, но это не останавливает современные технологии. Более того, именно благодаря этому свойству, сетчатка — один из наиболее стабильных физиологических признаков организма. Сканирование сетчатки происходит с использованием инфракрасного света низкой интенсивности, направленного через зрачок к кровеносным сосудам на задней стенке глаза. Для этих целей используется лазерный луч мягкого излучения. Вены и артерии, снабжающие глаз кровью, хорошо видны при подсветке глазного дна внешним источником света. Еще в 1935 году Саймон и Голдштейн доказали уникальность дерева кровеносных сосудов глазного дна для каждого конкретного индивидуума.
Сканеры для сетчатки глаза получили большое распространение в сверхсекретных системах контроля доступа , так как у них один из самых низких процентов отказа доступа зарегистрированных пользователей. Кроме того, в системах предусмотрена защита от муляжа.
В настоящее время широкому распространению этого метода препятствует ряд причин:
высокая стоимость считывателя;
невысокая пропускная способность;
психологический фактор.
Невысокая пропускная способность связана с тем, что пользователь должен в течение нескольких секунд смотреть в окуляр на зеленую точку.
Примером такого устройства распознавания свойств сетчатки глаза может служить продукция EyeDentify»s. Она использует камеру с сенсорами, которые с короткого расстояния (менее 3 см) измеряют свойства сетчатки глаза. Пользователю достаточно взглянуть одним глазом в отверстие камеры ICAM 2001, и система принимает решение о праве доступа. Основные характеристики считывателя ICAM 2001:
время регистрации (enrolment) — менее 1 мин;
время распознавания при сравнении с базой эталонов в 1 500 человек — менее 5 с; средняя пропускная способность — 4—7 с.
И тем не менее, эти системы совершенствуются и находят свое применение. В США, например, разработана новая система проверки пассажиров, основанная на сканировании сетчатки глаза. Специалисты утверждают, что теперь для проверки не нужно доставать из кармана бумажник с документами, достаточно лишь пройти перед камерой. Исследования сетчатки основываются на анализе более 500 характеристик. После сканирования код будет сохраняться в базе данных вместе с другой информацией о пассажире, и в последующем идентификация личности будет занимать всего несколько секунд. Использование подобной системы будет абсолютно добровольной процедурой для пассажиров.
Английская Национальная физическая лаборатория (National Physical Laboratory, NPL), по заказу организации Communications Electronics Security Group, специализирующейся на электронных средствах защиты систем связи, провела исследования различных биометрических технологий идентификации пользователей.
В ходе испытаний система распознавания пользователя по сетчатке глаза не разрешила допуск ни одному из более чем 2,7 млн «посторонних», а среди тех, кто имел права доступа, лишь 1,8% были ошибочно отвергнуты системой (проводилось три попытки доступа). Как сообщается, это был самый низкий коэффициент ошибочных решений среди проверяемых систем биометрической идентификации. А самый большой процент ошибок был у системы распознавания лица — в разных сериях испытаний она отвергла от 10до 25% законных пользователей.
Еще одним уникальным для каждой личности статическим идентификатором является радужная оболочка глаза. Уникальность рисунка радужной оболочки обусловлена генотипом личности, и существенные отличия радужной оболочки наблюдаются даже у близнецов. Врачи используют рисунок и цвет радужной оболочки для диагностики заболеваний и выявления генетической предрасположенности к некоторым заболеваниям. Обнаружено, что при ряде заболеваний на радужной оболочке появляются характерные пигментные пятна и изменения цвета. Для ослабления влияния состояния здоровья на результаты идентификации личности в технических системах опознавания используются только черно-белые изображения высокого разрешения.
Идея распознавания на основе параметров радужной оболочки глаза появилась еще в 1950-х годах. Джон Даугман, профессор Кембриджского университета, изобрел технологию, в состав которой входила система распознавания по радужной оболочке, используемая сейчас в Nationwide ATM. В то время ученые доказали, что не существует двух человек с одинаковой радужной оболочкой глаза (более того, даже у одного человека радужные оболочки глаз отличаются), но программного обеспечения, способного выполнять поиск и устанавливать соответствие образцов и отсканированного изображения, тогда еще не было.
В 1991 году Даугман начал работу над алгоритмом распознавания параметров радужной оболочки глаза и в 1994 году получил патент на эту технологию. С этого момента ее лицензировали уже 22 компании, в

Аутентификация по сетчатке глаза — Википедия

Аутентификация по сетчатке глаза — это одна из биометрических технологий, используемая для проверки подлинности личности. Тип биометрической технологии, который рассматривается в данной статье, использует физиологический параметр — уникальность сетчатки глаза. Данный метод часто путают с аутентификацией по радужной оболочке глаза, однако это совершенно другой способ аутентификации.

Первые упоминания об использовании сетчатки в качестве средства для проверки и идентификации восходят к 1930-м годам. Первое научное исследование было проведено доктором Карлтоном Саймоном и доктором Изодором Гольдштейном. В своей работе они предположили, что из-за различного распределения кровеносных сосудов сетчатка обладает структурой, уникальной для каждого человека, а значит может быть использована в качестве средства подтверждения личности.

Следующее научное исследование, которое подтвердило уникальность сетчатки, было проведено в 1950-х годах ученым, известным как доктор Пол Тауэр. Благодаря его работе было обнаружено, что даже у близнецов структура сетчатки различна. Более того, как и радужная оболочка глаза, сетчатка практически не изменяется в течение жизни человека, за исключением случаев болезни или слепоты.

Таким образом, распознавание по сетчатке является очень надежной системой биометрической аутентификации по сравнению с такими, как распознавание лиц или отпечатков пальцев.

В отличие от других биометрических способов, для распознавания сетчатки требуется большое количество требований от пользователя для сбора высококачественных данных. Необходимо, чтобы пользователь находился в непосредственной близости от устройства сканирования сетчатки. В этом состоит большое различие с распознаванием радужной оболочки, когда данные можно собирать с очень большого расстояния.

Процесс можно разбить следующим образом.

Сбор и обработка данных[править | править код]

На этом первом этапе человек должен зафиксировать свой глаз перед небольшим приемником. Отсюда инфракрасный световой луч затем излучается в глаз, чтобы полностью осветить сетчатку. Чтобы уменьшить вероятность ошибки, этот свет излучается на 360 градусов. Данный процесс может занять до нескольких минут. Чтобы обеспечить сбор качественных изображений, человек должен оставаться абсолютно неподвижным, очков или линз быть не должно в целях устранения помех. На этой стадии можно собрать и проанализировать до пяти необработанных изображений, чтобы создать комплексное изображение, из которого затем будут извлечены уникальные признаки.

Создание шаблона регистрации и подтверждения[править | править код]

На этом втором этапе извлекаются уникальные признаки. Генетические факторы фактически не определяют состав структуры кровеносных сосудов, из которых состоит сетчатка. Другими словами, это не вписывается в структуру ДНК человека и не передается потомству. Из-за этого с сетчатки может быть получено до 400 уникальных признаков (для отпечатка пальца — примерно в 30-40). После этого создается шаблон регистрации. Размер шаблона регистрации сетчатки составляет всего 96 байт и считается самым маленьким биометрическим шаблоном из всех. Это, очевидно, имеет многочисленные преимущества. Во-первых, при проверке статистической схожести между шаблонами проверки и регистрации значительно снижаются расходы на вычисления. Во-вторых, этот небольшой размер означает, что большее количество шаблонов может храниться в одной базе данных. Этот же процесс также используется для создания шаблона подтверждения.

Поскольку для распознавания сетчатки требуется высокая точность при сборе данных, существует ряд факторов, которые могут значительно помешать процессу распознавания:

  • Неаккуратность пользователя при считывании данных:
Как было описано, человек должен оставаться совершенно неподвижным на протяжении всего процесса. Любое внезапное или непреднамеренное движение может негативно повлиять на относительное расположение линзы, которая используется для передачи луча инфракрасного света в сетчатку.
  • Большое расстояние между глазом и объективом:
Для выполнения высококачественного сканирования между приемником и сетчаткой должно быть расстояние не более 3 дюймов. Если расстояние превышает вышеуказанное, процесс сканирования должен повторяться снова, пока данное требование не будет соблюдено. В этом отношении, по сравнению с другими биометрическими методами, точность имеет первостепенное значение при распознавании сетчатки.
  • Размер зрачка человека:
Маленький зрачок может значительно уменьшить количество внешнего света, который передается на сетчатку. Также, данная проблема может усугубиться при сжатии зрачка из-за неправильных условий освещения.

Преимущества[править | править код]

  • Сетчатка считается очень стабильной и практически не меняется в течение жизни человека. Таким образом, в этом отношении она считается самой надежной биометрической технологией, доступной на рынке сегодня.
  • Учитывая небольшой размер считываемых и анализируемых данных распознавания сетчатки, система способна быстро подтверждать личность человека.
  • Из-за большого количества уникальных признаков, которыми обладает сетчатка, вероятность ложного срабатывания крайне низка.
  • Поскольку сетчатка расположена внутри самой структуры глаза, она не подвержена влиянию внешней среды, в отличие от геометрии рук и отпечатков пальцев.

Недостатки[править | править код]

  • Многие люди опасаются, что данная процедура негативно влияет на зрение (хотя научно данный факт не доказан)
  • По сравнению со всеми другими биометрическими методами распознавание сетчатки требует от пользователя больше всего усилий.
  • Из-за высоких требований к пользователю может понадобиться несколько попыток аутентификации и длительное время для получения результатов. Таким образом, если процесс не будет выполнен правильно, это может привести к очень большой частоте ложных отказов.

Алгоритмы, используемые при аутентификации[править | править код]

Алгоритм, основанный на методе фазовой корреляции[править | править код]

В данном алгоритме оцениваются вращение и смещение изображений относительно друг друга при помощи метода фазовой корреляции. После этого изображения выравниваются и вычисляется коэффициент, называемый показателем схожести.

Пусть fs(x,y){\displaystyle f_{s}(x,y)} и fr(x,y){\displaystyle f_{r}(x,y)} — изображения, одно из которых сдвинуто на (x0,y0){\displaystyle (x_{0},y_{0})} относительно другого, а Fs(x,y){\displaystyle F_{s}(x,y)} и Fr(x,y){\displaystyle F_{r}(x,y)} — их преобразования Фурье, тогда:

fs(x,y)=fr(x−x0,y−y0){\displaystyle f_{s}(x,y)=f_{r}(x-x_{0},y-y_{0})}
Fs(u,v)=e−j2π(ux0+vy0)Fr(u,v){\displaystyle F_{s}(u,v)=e^{-j2\pi (ux_{0}+vy_{0})}F_{r}(u,v)}
R=Fr(u,v)Fs∗(u,v)|Fs(u,v)Fr(u,v)|′{\displaystyle R={\frac {F_{r}(u,v)F_{s}^{*}(u,v)}{|F_{s}(u,v)F_{r}(u,v)|^{\prime }}}}, где R — кросс-спектр

Получим импульс-функцию, вычислив обратное преобразование Фурье кросс-спектра

F−1(R)=δ(x−x0,y−y0){\displaystyle F^{-1}(R)=\delta (x-x_{0},y-y_{0})}

Найдем искомое смещение, предварительно определив максимум этой функции Затем при помощи полярных координат найдем угол вращения θ0{\displaystyle \theta _{0}} при наличии смещения (x0,y0){\displaystyle (x_{0},y_{0})}:

fs(x,y)=fr(xcosθ0−ysinθ0−x0,xsinθ0+ycosθ0−y0){\displaystyle f_{s}(x,y)=f_{r}(xcos\theta _{0}-ysin\theta _{0}-x_{0},xsin\theta _{0}+ycos\theta _{0}-y_{0})}
Fs(u,v)=e−j2π(ux0+vy0)Fr(ucosθ0−vsinθ0,usinθ0+vcosθ0){\displaystyle F_{s}(u,v)=e^{-j2\pi (ux_{0}+vy_{0})}F_{r}(ucos\theta _{0}-vsin\theta _{0},usin\theta _{0}+vcos\theta _{0})}
|Fs(ρ,θ)|=|Fr(ρ,θ−θ0)|{\displaystyle |F_{s}(\rho ,\theta )|=|F_{r}(\rho ,\theta -\theta _{0})|}

Затем, как и в предыдущем случае, применяется метод фазовой корреляции. После этого вычисляется показатель схожести по следующей формуле:

similarity=count_non_zero_pixels(fs(x,y)⋂fr(x,y))count_non_zero_pixels(fs(x,y)⋃fr(x,y)){\displaystyle similarity={\frac {count\_non\_zero\_pixels(f_{s}(x,y)\bigcap f_{r}(x,y))}{count\_non\_zero\_pixels(f_{s}(x,y)\bigcup f_{r}(x,y))}}}

Вышеописанная техника на практике не всегда показывает хорошие результаты вследствие наличия шумов на изображениях. Для устранения этого недостатка данный алгоритм применяется итеративно (возможно, с изменением порядка подачи изображений в функцию). Каждый раз изображения выравниваются и рассчитывается показатель схожести. Конечным результатом будет считаться наибольший показатель схожести.

  • В среднем сетчатка глаза человека содержит 92 миллиона палочек, поэтому ее действительно можно считать уникальной.
  • Исследования национальной лаборатории США показали, что вероятность ошибки второго рода при данном способе аутентификации крайне мала (меньше 1%).

современные методы идентификации по биометрическим показателям / Habr

Дактилоскопия — наиболее известный и распространенный метод установления личности по биометрическому параметру, отлично зарекомендовала себя в криминалистике XX века и помогла раскрыть ни одну сотню преступлений. Однако технологии не стоят на месте, и отпечатки пальцев перестали быть единственным «ключом» к идентификации.

Современная техника научились узнавать пользователей по сетчатке и радужной оболочке глаза, форме лица и рук и ряду динамических характеристик — голосу, биологической активности сердца, рукописному и клавиатурному почерку.

Идентификация по радужной оболочке глаза


Подобно отпечатку пальца, рисунок радужной оболочки глаза является уникальной характеристикой человека, а метод установления личности по этому биометрическому параметру, по мнению экспертов, превосходит в надежности привычную дактилоскопию. Для того, чтобы зафиксировать узор на радужке, нужна фотокамера с высоким разрешением. Полученное изображение увеличивается и преобразуется в уникальный код, присваиваемый человеку.

Рисунок радужки, который окончательно формируется на втором году жизни ребенка, практически не изменяется в течение жизни, если человек не получает травм и не страдает от серьезных офтальмологических патологий. В то же время, папиллярный узор отпечатка пальца подвержен изменению даже в результате мелких бытовых повреждений — ожогов или порезов, что делает этот метод идентификации менее эффективным, чем анализ радужной оболочки.

Достоинством метода является и простота в сканировании. Человеку не обязательно сосредоточенно смотреть в одну точку, ведь пятна на сетчатке находятся прямо на поверхности глазного яблока и легко считываются на расстоянии, не превышающем 1 метр. Использовать данный метод удобно в банковских организациях или общественном транспорте. Заинтересовались технологией и производители смартфонов — в 2015 году в Японии в продажу поступила первая модель со сканером радужной оболочки — Fujitsu Arrows NX F-04G. По мнению разработчиков, внедрение технологии идентификации по радужке глаза поможет защитить личные данные владельцев смартфонов.

Идентификация по сетчатке


Просканировать сетчатку — внутреннюю оболочку глазного яблока, реагирующую на свет, сложнее: для этого к кровеносным сосудам задней стенки глаза через зрачок посылают низкоинтенсивные инфракрасные световые лучи. Подобный метод установления личности считается высокоэффективным и активно используется на правительственных и военных объектах.

Капилярный рисунок сетчатки различается даже у близнецов, что снижает вероятность ошибки идентификации. Однако, в 2012 году ученые из Университета Нотр-Дам в США обнаружили погрешности в определении личностей людей, чьи данные были внесены в базу ранее 2008 года, и доказали, что, в отличие от рисунка на радужной оболочке, рисунок сетчатки подвержен ряду возрастных изменений.

И снова производители мобильных гаджетов не остались в стороне. Ряд компаний (например, китайская ZTE CORPORATION) работает на созданием комбинированных технологий идентификации по сетчатке и радужке.

Распознавание по «геометрии» лица


Метод установления личности по чертам кажется экспертам одним из наиболее перспективных, во многом благодаря своей «привычности»: люди с легкостью идентифицируют друг друга по лицам, так почему бы не научить этому компьютер? В основе технологии — создание двухмерных или трехмерных «карт» человеческих черт — система запоминает и опознает контуры носа и губ, форму бровей, расстояние между отдельными чертами.

Разработчики систем биометрического анализа отечественной компании BioLink называют распознавание по лицу второй по распространенности и популярности биометрической технологией. Однако, «опознание» по геометрии лица — задача трудоемкая, ведь на восприятие машины влияет освещение, угол наклона головы, наличие макияжа.

Наиболее эффективно техника распознает статичные изображения — фотографии. Так, система искусственного интеллекта FaceNet, созданная Google, “опознала” 99,63% фото пользователей интернета.

Распознавание по биологической активности сердца


Одна из новейших технологий динамической биометрической идентификации — установление личности на основе данных о работе сердечно-сосудистой системы.

В 2014 году Канадская компания Bionym представила миру устройство, позволяющее использовать ЭКГ человека в качестве персонального идентификатора. «В научном сообществе существует устоявшаяся идея о том, что уникальность и постоянство человеческого сердечного ритма позволяет использовать его в качестве биометрического идентификатора», — заметил генеральный директор Bionym Карл Мартин. — «В сущности, нужно сделать следующее: взять форму ЭКГ и подвергнуть ее машинному анализу, чтобы выявить уникальные и постоянные особенности».

Высокую эффективность технологии отметили отечественные специалисты по безопасности. «Кардиограмма, как оказывается, тоже может быть вполне перспективным средством биометрической аутентификации,» — отмечали эксперты «Лаборатории Касперского».

Подобные разработки уже сейчас ведутся в России. Например, представители отечественной компании CardioQVARK (о них уже были статьи на Хабре и Гиктаймс), производящей чехлы-кардиомониторы для iPhone, в работе «Исследование искусственных нейронных сетей в задаче идентификации личности по электрокардиосигналу» показали, что их продукт может помочь в установлении личности пользователей.

Основное назначение устройства — удаленный контроль за состоянием здоровья пациентов-сердечников, однако возможность сделать экспресс-анализ состояния сердечно-сосудистой системы позволит идентифицировать человека без временных затрат. Процедура снятия ЭКГ при помощи чехла от CardioQVARK предельно проста и занимает всего лишь несколько секунд: достаточно приложить пальцы к датчикам и результат ЭКГ появится на экране гаджета и в приложении для врача.

Анализ голоса


Биометрический метод идентификации по голосу прост в применении — достаточно оснастить аналитическое устройство микрофоном и записать «звучание» конкретного человека. Широкое распространение данного метода обусловлено наличием микрофона и возможности записи звука на большинстве современных мобильных гаджетов и компьютеров. Однако, технология имеет ряд существенных недостатков: голос одного и того же человека может звучать по-разному в зависимости от его психологического и физического состояния, уровня шума, качества микрофона.

Не только безопасность


Вопреки распространенному мнению, системы биометрической идентификации внедряются не только ради обеспечения безопасности охраняемых объектов или противодействия преступности. Например, ряд систем идентификации применяется в образовательных учреждениях. Некоторые современные школы внедряют сканирование радужной оболочки учащихся для контроля посещаемости и даже для упрощения процедуры оплаты школьных завтраков и обедов — ребенок приходит в столовую, его сетчатка сканируется, со счета родителей списывается определенная сумма за питание отпрыска. Используются и системы, сканирующие отпечатки пальцев. На производстве же подобные системы позволяют отмечать время, проведенное сотрудником на рабочем месте.

Сканирование сетчатки глаза — новый метод выявления заболеваний » 24Gadget.Ru :: Гаджеты и технологии

Сканирование сетчатки глаза - новый метод выявления заболеваний
Ранняя и правильная диагностика заболевания — это практически на 80% успешное лечение. К сожалению, обычные методы диагностики и профилактические осмотры не всегда могут выявить некоторые болезни на ранней стадии. Помимо высокой квалификации врача требуется наличие особого медицинского оборудования и реактивов, которые есть в центральных медицинских центрах, но проблематично найти в отдалённых районах и сёлах.

Поэтому сканер сетчатки глаза, созданный сотрудниками Медицинского университета г. Вены, станет в буквальном смысле спасением для многих людей, так как позволит врачам определить заболевание на ранней стадии и начать скорейшее лечение. Диагностика болезней по форме и изменению радужной оболочки глаза — иридодиагностика — известна давно. Главное правильно и точно считать информацию, которую проецируют на оболочку внутренние органы и различные части тела. Помочь в этом и должен сканер, в основу работы которого положена технология оптической когерентной томографии (ОКТ), производящей до 40 тыс. снимков за 1.2 секунды. Далее производится анализ полученных сведений с применением алгоритмов на основе искусственного интеллекта, после чего выдаётся заключение.

На этапе проведения данного метода диагностики даже не требуется присутствие офтальмолога. Врач уже получает заключение, на основе которого и выбирает курс лечения.

На сегодняшний день при помощи данного сканера можно обнаружить наличие у пациента диабета или предрасположенности к нему, получить данные о биологическом возрасте, стаже курения и некоторых других заболеваниях. Изобретатели не собираются останавливаться на достигнутом и постоянно дорабатывают аппарат. В скором времени ожидается расширение возможностей сканера путём усовершенствования алгоритма с целью выявления возрастных дегенеративных изменений организма, заболеваний и патологий внутренних органов, неврологических проблем.

Источник: sciencedaily.com

Разница между радужной оболочкой и сетчаткой глаза в сфере биометрической идентификации

Технологии сканирования и распознавания радужной оболочки и сетчатки глаза — надежные методы биометрической идентификации. Они обладают различными характеристиками, которые оказывают сильное влияние на их производительность в зависимости от условий окружающей среды и целей внедрения. Оба биометрических метода используют бесконтактные сканеры, но между распознаванием радужной оболочки и сканированием сетчатки глаза есть и заметные различия. Одно из этих различий заключается в том, что распознавание радужной оболочки считается неинвазивным методом, а сканирование сетчатки глаза — инвазивным, так как во время процесса сканирования в глаза попадают лучи видимого света.

Эти биометрические технологии идентификации часто неправильно воспринимаются как одно и то же, несмотря на их отдельные отличия. В этой статье мы обсудим различия между этими двумя технологиями, которые сегодня активно внедряют в системы контроля доступа.

Сканирование сетчатки глаза

Сетчатка глаза человека представляет собой тончайшую ткань, состоящую из нервных клеток, расположенных в задней части глаза. Из-за сложного расположения капилляров, питающих сетчатку кровью, сетчатка каждого человека является уникальной. Сеть кровеносных сосудов в сетчатке настолько сложна, что отличается даже у идентичных близнецов. Рисунок сетчатки может измениться в результате развития таких заболеваний как, например, сахарный диабет или глаукома, однако, в остальных случаях сетчатка, как правило, остается неизменной с момента рождения до самой смерти.

Биометрическая технология сканирования сетчатки используется для отображения уникального рисунка сетчатки человека. Кровеносные сосуды внутри сетчатки поглощают свет с большей интенсивностью, чем окружающие ткани, поэтому их легко идентифицировать. Сканирование сетчатки глаза осуществляется путем проецирования невоспринимаемого глазом луча инфракрасного света в глаз человека через окуляр сканера. Поскольку кровеносные сосуды сетчатки абсорбируют этот свет интенсивнее, чем остальные части глаза, во время сканирования создается определенный узор, который преобразуется в компьютерный код и сохраняется в базе данных. Сканирование сетчатки также имеет медицинское применение. Такие инфекционные заболевания как СПИД, сифилис, малярия, ветряная оспа, а также такие наследственные заболевания как лейкемия, лимфома и серповидно-клеточная анемия оказывают свое воздействие на глаза. Беременность также влияет на глаза. Кроме того, признаки хронических заболеваний, таких как хроническая сердечная недостаточность или атеросклероз, также сначала проявляются в глазах.

Значение

Биометрические системы идентификации на основе сканирования сетчатки глаз в основном используются в государственных учреждениях с высокой степенью защиты, таких как ФБР, ЦРУ и NASA. Одна из причин, почему биометрические решения идентификации на основе считывания сетчатки глаз не были широко распространены — это их высокая стоимость.

Распознавание радужной оболочки глаз

Радужная оболочка глаза человека представляет собой тонкую круглую структуру глаза, которая отвечает за контроль размера и диаметра зрачков и, следовательно, количество света, попадающего на сетчатку. «Цвет глаз» — это цвет именно радужной оболочки глаза.

Распознавание радужной оболочки глаз представляет собой автоматизированный метод биометрической идентификации, который использует математические методы для распознавания уникального рисунка радужной оболочки глаз того или иного человека.

В отличие от сканирования сетчатки глаза, для распознавания радужной оболочки применяется технология использования едва уловимой инфракрасной подсветки, позволяющей получить изображения сложной структуры радужной оболочки глаза. Сотни миллионов людей в странах по всему миру, в целях безопасности и удобства, уже зарегистрированы в системах распознавания радужной оболочки глаза.

Значение

Использование биометрической технологии распознавания радужной оболочки глаза для идентификации пациентов в здравоохранении стремительно растет — вслед за применением в сфере пограничного контроля, в системах контроля доступа и учета рабочего времени. Благодаря сочетанию надежности, точности, скорости и относительно низким затратам (плюс тот факт, что технология является бесконтактной и неинвазивные), технология распознавания радужной оболочки глаз приобретает все большую популярность в качестве решения индивидуальной идентификации в широком спектре отраслей промышленности. Еще одним преимуществом радужной оболочки глаза в целях идентификации является неизменность ее структуры в течение десятилетий после первоначальной регистрации.

Вывод

В заключение, давайте рассмотрим различия между технологиями распознавания радужной оболочки и сканирования сетчатки глаза:

  • Точность сканирования сетчатки может зависеть от заболевания; структура радужной оболочки является более стабильной.
  • Распознавание радужной оболочки похоже на фотосъемку и может быть сделано с расстояния; в то же время сканирование сетчатки требует очень близкого приближения глаза к окуляру.
  • Распознавание радужной оболочки получило более широкое признание в коммерческой среде, чем сканирование сетчатки глаза.
  • В то время как обе эти технологии являются бесконтактными, сканирование сетчатки глаза считается инвазивной технологией, поскольку подразумевает попадание в глаза лучей видимого света, тогда как распознавание радужной оболочки является неинвазивным.

Важно понимать различия между сканированием сетчатки глаза и распознаванием радужной оболочки, если вы планируете инвестировать в биометрию и ожидаете высокую отдачу от инвестиций. Мы надеемся, что смогли четко указать на различия между этими двумя современными технологиями безопасности.

Источник blog.m2sys.com. Перевод статьи выполнила администратор сайта Елена Пономаренко

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о