Гироскоп трехосевой – Гироскоп в телефоне — что это за датчик, зачем он нужен, применение при использовании карт и в играх

alexxlab
alexxlab
25.02.2020

Содержание

что это такое и для чего используется

Современные телефоны представляют собой довольно сложные устройства, содержащие множество модулей и датчиков. Рядовой пользователь редко интересуется тем, из чего состоит его смартфон. Человеку важно получить качественный аппарат, позволяющий запускать игры, просматривать видео и посещать веб-сайты. Однако при тщательном изучении информации можно обнаружить множество, казалось бы, ненужных деталей, установленных в телефонах. В этой статье давайте разберёмся, что такое гироскоп в телефоне, а также рассмотрим, для чего он используется и как настраивается.

Что такое гироскоп в телефоне

что такое гироскопГироскоп в телефоне – это специальный датчик, предназначенный для определения положения устройства в пространстве. Его нельзя назвать новым изобретением, так как подобную технологию можно было встретить уже в 19-ом веке. В то время это был довольно громоздкий прибор, представляющий собой круг, вращающийся вокруг оси. Если объяснять более конкретно, то он был похож на детскую юлу или волчка.

Понятное дело, что в смартфоны устанавливается совершенно другая конструкция. Это небольшой датчик, который обладает длиной в 3-5 мм, высотой в 5 мм, а шириной в 4 мм. Даже несмотря на столь смешные габариты, многие производители не устанавливают его в свои аппараты, стремясь сделать телефон максимально тонким. Гироскоп вычисляет угол наклона устройства относительно земли, а после передаёт полученные данные операционной системе.

Без подобного датчика было бы сложно играть в игры, особенно гонки, где для управления требуется поворачивать смартфон. Качественные гироскопы настолько точные, что способны определять отклонения на 1-2 градуса. Этого достаточно, чтобы вовремя изменить ориентацию экрана телефона или повернуть игрового персонажа.

Для чего нужен гироскоп в телефоне

кристалл гироскопа в телефоне

Как было сказано выше, главное предназначение гироскопа в телефоне – это определение положения устройства в пространстве. Но зачем системе знать, насколько градусов наклонён смартфон? Ответ на этот вопрос вы можете найти далее, ознакомившись со следующим списком:

  • Просмотр видео в 360 градусов. Если у вас есть очки виртуальной реальности, то вы можете просматривать ролики и играть в игры без нажатий по экрану. Все повороты становятся возможными благодаря гироскопу.
  • Встряхивание телефона. Без рассматриваемого датчика нельзя было бы использовать функцию, позволяющую разблокировать смартфон после встряхивания.
  • Использование навигации. Без гироскопа практически невозможно пользоваться GPS и компасом. Этот датчик позволяет определять стороны горизонта и расположение человека относительно спутника.
  • Управление персонажем в играх.
    Существует огромное количество мобильных игр, где для управления автомобилем или героем нужно поворачивать телефон. Без гироскопа система никак не смогла бы понять положение устройства.

Конечно, в этом списке описаны не все ситуации, где используется гироскоп, но их будет достаточно для первоначального ознакомления.

Чем отличается гироскоп от акселерометра

Гироскоп и акселерометр – датчики, предназначенные для определения положения смартфона в пространстве. Самое главное и единственное отличие между ними кроется в принципе считывания данных. Первый компонент высчитывает угол наклона телефона относительно поверхности земли, а после передаёт полученную информацию операционной системе. А вот акселерометр вычисляет ускорение, причём очень точно.

использование гироскопа и акселерометра

Именно поэтому в качестве шагомера лучше использовать телефон с акселерометром. Полученные данные будут максимально точными, так как датчик учитывает отклонения даже на десятые части миллиметра. Современные производители стараются устанавливать в свои смартфоны как гироскоп, так и акселерометр. Подобное решение является правильным, что исключает случайные повороты экрана устройства при его перемещении.

Как проверить гироскоп в телефоне

Трудно найти смартфон, в которым бы отсутствовал датчик для определения положения устройства в пространстве. Гироскоп не нужно как-то активировать в настройках, а вот проверить его работоспособность лишним не будет. Легче всего это сделать через запуск видео в 360 градусов на YouTube.

Для этого нужно выполнить следующие действия:

  1. Откроем мобильное приложение YouTube.
  2. В поиске введём запрос «360 градусов».
  3. Запустим любое видео, поддерживающее просмотр в режиме 360 градусов.
  4. Попробуем повернуть телефон. Если изображение изменяется относительно угла наклона, то гироскоп работает корректно. В том случае, когда ничего не происходит, убедитесь в активации автоповорота экрана.

проверка гироскопа через YouTube

Таким же образом можно запустить игру и попытаться управлять персонажем. Если всё работает корректно, то значит гироскоп исправен. А вот для более точных тестов необходимо воспользоваться специальным приложением. В качестве примера рассмотрим работу утилиты Sensor Box For Android.

Установим приложение из Google Play, а после выполним рекомендации инструкции:

  1. Переходим во вкладку «Sensor Box».
  2. Нажимаем по пункту «Accelerometer Sensor».
  3. Теперь поворачиваем телефон и следим за шариком на экране. Если объект на экране синхронно передвигается при наклоне телефона, то значит, что с гироскопом или акселерометром всё в порядке. Также можно нажать по строке «Hardware», где будет указана информация об установленном датчике.

проверка гироскопа с помощью Sensor Box For Android

При желании можно установить другое приложение, например, AnTuTu Benchmark или AIDA64, и провести полную проверку смартфона.

Например, в случае использования AIDA64, нужно запустить приложение и перейти в раздел «Датчики». Здесь вы получите информацию об установленных комплектующих, где и будет указаны данные о гироскопе.

проверка гироскопа с помощью AIDA64

Подводя итоги отметим, что гироскоп – важный датчик, позволяющий системе определять положение телефона в пространстве. Без него было бы невозможно активировать автоповорот экрана, просматривать видео в очках виртуальной реальности и корректно пользоваться навигацией.

ГИРОСКОП • Большая российская энциклопедия

ГИРОСКО́П (от греч. γῦρος – круг, ок­руж­ность и σϰοπέω – на­блю­дать), уст­рой­ст­во, со­вер­шаю­щее бы­ст­рые цик­ли­че­ские (вра­ща­тель­ные или ко­ле­ба­тель­ные) дви­же­ния и чув­ст­ви­тель­ное вслед­ст­вие это­го к по­во­ро­ту в инер­ци­аль­ном про­стран­ст­ве. Тер­мин «Г.» пред­ло­жен в 1852 Ж. Б. Л. Фу­ко для изо­бре­тён­но­го им при­бо­ра, пред­на­зна­чен­но­го для де­мон­ст­ра­ции вра­ще­ния Зем­ли во­круг сво­ей оси. Дол­гое вре­мя тер­мин «Г.» ис­поль­зо­вал­ся для обо­зна­че­ния бы­ст­ров­ра­щаю­ще­го­ся сим­мет­рич­но­го твёр­до­го те­ла. В совр. тех­ни­ке Г. – осн. эле­мент все­воз­мож­ных ги­ро­ско­пич. уст­ройств или при­бо­ров, ши­ро­ко при­ме­няе­мых для ав­то­ма­тич. управ­ле­ния дви­же­ни­ем са­мо­лё­тов, су­дов, тор­пед, ра­кет, кос­мич. ап­па­ра­тов, мо­биль­ных ро­бо­тов, для це­лей на­ви­га­ции (ука­за­те­ли кур­са, по­во­ро­та, го­ри­зон­та, стран све­та), для из­ме­ре­ния уг­ло­вой ори­ен­та­ции под­виж­ных объ­ек­тов и во мно­гих др. слу­ча­ях (напр., при про­хо­ж­де­нии ство­лов што­лен, строи­тель­ст­ве мет­ро­по­ли­те­нов, при бу­ре­нии сква­жин).

Классический гироскоп

Со­глас­но за­ко­нам нью­то­нов­ской ме­ха­ни­ки ско­рость по­во­ро­та оси бы­ст­ров­ра­щаю­ще­го­ся сим­мет­рич­но­го твёр­до­го те­ла в про­стран­ст­ве об­рат­но про­пор­цио­наль­на его собств. уг­ло­вой ско­ро­сти и, сле­до­ва­тель­но, ось Г. по­во­ра­чи­ва­ет­ся столь мед­лен­но, что на не­ко­то­ром ин­тер­ва­ле вре­ме­ни её мож­но ис­поль­зо­вать в ка­че­ст­ве ука­за­те­ля не­из­мен­но­го на­прав­ле­ния в про­стран­ст­ве.

Рис. 2. Классический гироскоп в кардановом подвесе: 1 – внешнее кольцо; 2 – внутреннее кольцо; 3 – ротор.

Рис. 1. Прецессия гироскопа. Угловая скорость прецессии 𝛚 направлена так, что вектор собственного кинетического момента H стремится к совмещению с вектором момента M пары сил {P, P’}, P’=–P, дей…

Про­стей­шим Г. яв­ля­ет­ся вол­чок, па­ра­док­саль­ность по­ве­де­ния ко­то­ро­го за­клю­ча­ет­ся в его со­про­тив­ле­нии из­ме­не­нию на­прав­ле­ния оси вра­ще­ния. Под воз­дей­ст­ви­ем внеш­ней си­лы ось волч­ка на­чи­на­ет дви­гать­ся в на­прав­ле­нии, пер­пен­ди­ку­ляр­ном век­то­ру си­лы. Имен­но бла­го­да­ря это­му свой­ст­ву вра­щаю­щий­ся вол­чок не па­да­ет, а его ось опи­сы­ва­ет ко­нус во­круг вер­ти­ка­ли. Это дви­же­ние на­зы­ва­ет­ся пре­цес­си­ей Г. Ес­ли к оси бы­ст­ро вра­щаю­ще­го­ся сво­бод­но­го Г. при­ло­жить па­ру сил $\{\boldsymbol P, \boldsymbol P′\}, \boldsymbol P′=– \boldsymbol P$, с мо­мен­том $M=Ph$, где $h$ – пле­чо па­ры сил (рис. 1), то (про­тив ожи­да­ния) Г. нач­нёт до­пол­ни­тель­но по­во­ра­чи­вать­ся не во­круг оси $x$, пер­пен­ди­ку­ляр­ной к плос­ко­сти па­ры сил, а во­круг оси $y$, ле­жа­щей в этой плос­ко­сти и пер­пен­ди­ку­ляр­ной оси $z$ вра­ще­ния Г. Ес­ли в к.-л. мо­мент вре­ме­ни дей­ст­вие па­ры сил пре­кра­тит­ся, то од­но­вре­мен­но пре­кра­тит­ся пре­цес­сия, т. е. пре­цес­си­он­ное дви­же­ние Г. безы­нер­ци­он­но. Что­бы ось Г. мог­ла сво­бод­но по­во­ра­чи­вать­ся в про­стран­ст­ве, Г. обыч­но за­кре­п­ля­ют в коль­цах кар­да­но­во­го под­ве­са (рис. 2), ко­то­рый пред­став­ля­ет со­бой сис­те­му твёр­дых тел (ра­мок, ко­лец), по­сле­до­ва­тель­но со­еди­нён­ных ме­ж­ду со­бой ци­лин­д­рич. шар­ни­ра­ми. Обыч­но при от­сут­ст­вии тех­но­ло­гич. по­греш­но­стей оси ра­мок кар­да­но­во­го под­ве­са пе­ре­се­ка­ют­ся в од­ной точ­ке – цен­тре под­ве­са. За­кре­п­лён­ное в та­ком под­ве­се сим­мет­рич­ное те­ло вра­ще­ния (ро­тор) име­ет три сте­пе­ни сво­бо­ды и мо­жет со­вер­шать лю­бой по­во­рот во­круг цен­тра под­ве­са. Г., у ко­то­ро­го центр масс сов­па­да­ет с цен­тром под­ве­са, на­зы­ва­ет­ся урав­но­ве­шен­ным, ас­та­ти­че­ским или сво­бод­ным. Изу­че­ние за­ко­нов дви­же­ния клас­сич. Г. – за­да­ча ди­на­ми­ки твёр­до­го те­ла.

Осн. ко­ли­че­ст­вен­ной ха­рак­те­ри­сти­кой ро­то­ра ме­ха­нич. Г. яв­ля­ет­ся его век­тор собств. ки­не­тич. мо­мен­та, на­зы­вае­мо­го так­же мо­мен­том ко­ли­че­ст­ва дви­же­ния или мо­мен­том им­пуль­са, $$\boldsymbol H=I\boldsymbol{\Omega}, \,\,\,(1)$$где $I$ – мо­мент инер­ции ро­то­ра Г. от­но­си­тель­но оси собств. вра­ще­ния, $\boldsymbol \Omega$ – уг­ло­вая ско­рость собств. вра­ще­ния Г. от­но­си­тель­но оси сим­мет­рии.

Мед­лен­ное дви­же­ние век­то­ра собств. ки­не­тич. мо­мен­та Г. под дей­ст­ви­ем мо­мен­тов внеш­них сил, на­зы­вае­мое пре­цес­си­ей Г., опи­сы­ва­ет­ся урав­не­ни­ем$$\boldsymbol {\omega} × \boldsymbol H=\boldsymbol M,\,\,\,(2)$$где $\boldsymbol \omega$ – век­тор уг­ло­вой ско­ро­сти пре­цес­сии, $\boldsymbol H$ – век­тор собств. ки­не­тич. мо­мен­та Г., $\boldsymbol M$ – ор­то­го­наль­ная к $\boldsymbol H$ со­став­ляю­щая век­то­ра мо­мен­та внеш­них сил, при­ло­жен­ных к ги­ро­ско­пу.

Мо­мент сил, при­ло­жен­ных со сто­ро­ны ро­то­ра к под­шип­ни­кам оси собств. вра­ще­ния ро­то­ра, воз­ни­каю­щий при из­ме­не­нии на­прав­ле­ния оси и оп­ре­де­ляе­мый урав­не­ни­ем$$\boldsymbol {M}_g=–\boldsymbol{M}=\boldsymbol H×\boldsymbol \omega,\,\,\,(3)$$на­зы­ва­ет­ся ги­ро­ско­пич. мо­мен­том.

Кро­ме мед­лен­ных пре­цес­си­он­ных дви­же­ний ось Г. мо­жет со­вер­шать бы­ст­рые ко­ле­ба­ния с ма­лой ам­пли­ту­дой и вы­со­кой час­то­той – т. н. ну­та­ции. Для сво­бод­но­го Г. с ди­на­ми­че­ски сим­мет­рич­ным ро­то­ром в бе­зы­нер­ци­он­ном под­ве­се час­то­та ну­та­ци­он­ных ко­ле­ба­ний оп­ре­де­ля­ет­ся фор­му­лой $$ν=H/A,$$где $A$ – мо­мент инер­ции ро­то­ра от­но­си­тель­но оси, ор­то­го­наль­ной оси собств. вра­ще­ния и про­хо­дя­щей че­рез центр масс ро­то­ра. При на­ли­чии сил тре­ния ну­та­ци­он­ные ко­ле­ба­ния обыч­но дос­та­точ­но бы­ст­ро за­ту­ха­ют.

По­греш­ность Г. из­ме­ря­ет­ся ско­ро­стью ухо­да его оси от пер­во­на­чаль­но­го по­ло­же­ния. Со­глас­но урав­не­нию (2) ве­ли­чи­на ухо­да, на­зы­вае­мо­го так­же дрей­фом, про­пор­цио­наль­на мо­мен­ту сил $M$ от­но­си­тель­но цен­тра под­ве­са Г.:$$ω_{yx}=M/H.\,\,\,(4)$$Уход $ω_{yx}$ обыч­но из­ме­ря­ет­ся в уг­ло­вых гра­ду­сах в час. Из фор­му­лы (4) сле­ду­ет, что сво­бод­ный Г. функ­цио­ни­ру­ет иде­аль­но лишь в том слу­чае, ес­ли внеш­ний мо­мент $M$ ра­вен 0. При этом уг­ло­вая ско­рость пре­цес­сии об­ра­ща­ет­ся в нуль и ось собств. вра­ще­ния бу­дет в точ­но­сти сов­па­дать с не­из­мен­ным на­прав­ле­ни­ем в инер­ци­аль­ном про­стран­ст­ве.

Од­на­ко на прак­ти­ке лю­бые сред­ст­ва, ис­поль­зуе­мые для под­ве­са ро­то­ра Г., яв­ля­ют­ся при­чи­ной воз­ник­но­ве­ния не­же­ла­тель­ных внеш­них мо­мен­тов не­из­вест­ных ве­ли­чи­ны и на­прав­ле­ния. Форму­ла (4) оп­ре­де­ля­ет пу­ти по­вы­ше­ния точ­но­сти ме­ха­нич. Г.: на­до умень­шить «вред­ный» мо­мент сил $M$ и уве­ли­чить ки­не­тический мо­мент $H$. При вы­бо­ре уг­ло­вой ско­ро­сти Г. не­об­хо­ди­мо учи­ты­вать од­но из главных ог­ра­ни­че­ний, свя­зан­ных с пре­де­ла­ми проч­но­сти ма­те­риа­ла ро­то­ра из-за воз­ни­каю­щих при вра­ще­нии цен­тро­беж­ных сил. При раз­го­не ро­то­ра вы­ше т. н. до­пус­кае­мой уг­ло­вой ско­ро­сти на­чи­на­ет­ся про­цесс его раз­ру­ше­ния.

Луч­шие совр. Г. име­ют слу­чай­ный уход по­ряд­ка 10–4–10–5°/ч. Ось Г. с по­греш­но­стью 10–5°/ч со­вер­ша­ет пол­ный обо­рот на 360° за 4 тыс. лет! Точ­ность ба­лан­си­ров­ки Г. с по­греш­но­стью 10–5 °/ч долж­на быть вы­ше од­ной де­ся­ти­ты­сяч­ной до­ли мик­ро­мет­ра (10–10 м), т. е. сме­ще­ние цен­тра масс ро­то­ра из цен­тра под­ве­са не долж­но пре­вы­шать ве­ли­чи­ну по­ряд­ка диа­мет­ра ато­ма во­до­ро­да.

Гироскопические устройства

мож­но раз­де­лить на си­ло­вые и из­ме­ри­тель­ные. Си­ло­вые уст­рой­ст­ва слу­жат для соз­да­ния мо­мен­тов сил, при­ло­жен­ных к ос­но­ва­нию, на ко­то­ром ус­та­нов­лен ги­ро­ско­пич. при­бор; из­ме­ри­тель­ные пред­на­зна­че­ны для оп­ре­де­ле­ния па­ра­мет­ров дви­же­ния ос­но­ва­ния (из­ме­ряе­мы­ми па­ра­мет­ра­ми мо­гут быть уг­лы по­во­ро­та ос­но­ва­ния, про­ек­ции век­то­ра уг­ло­вой ско­ро­сти и т. п.).

Рис. 3. Авиационный гироуказатель курса с воздушным приводом: 1 – основание; 2 – зубчатое колесо синхронизатора; 3 – ручка арретира; 4 – арретир; 5 – шкала азимута; 6 &nd…

Впер­вые урав­но­ве­шен­ный Г. на­шёл прак­тич. при­ме­не­ние в 1898 в при­бо­ре для ста­би­ли­за­ции кур­са тор­пе­ды, изо­бре­тён­ном австр. ин­же­не­ром Л. Об­ри. Ана­ло­гич­ные при­бо­ры в разл. ва­ри­ан­тах ис­пол­не­ния на­ча­ли ис­поль­зо­вать в 1920-х гг. на са­мо­лё­тах для ука­за­ния кур­са (Г. на­прав­ле­ния, ги­ро­по­лу­ком­па­сы), а позд­нее для управ­ле­ния дви­же­ни­ем ра­кет. На рис. 3 по­ка­зан при­мер при­ме­не­ния ги­ро­ско­па с тре­мя сте­пе­ня­ми сво­бо­ды в ави­ац. ука­за­те­ле кур­са (ги­ро­по­лу­ком­па­се). Вра­ще­ние ро­то­ра в ша­ри­ко­под­шип­ни­ках соз­да­ёт­ся и под­дер­жи­ва­ет­ся стру­ёй сжа­то­го воз­ду­ха, на­прав­лен­ной на риф­лё­ную по­верх­ность обо­да. По шка­ле ази­му­та, при­кре­п­лён­ной к на­руж­ной рам­ке, мож­но, ус­та­но­вив ось собств. вра­ще­ния ро­то­ра па­рал­лель­но плос­ко­сти ос­но­ва­ния при­бо­ра, вве­сти тре­буе­мое зна­че­ние ази­му­та. Тре­ние в под­шип­ни­ках не­зна­чи­тель­но, по­это­му ось вра­ще­ния ро­то­ра со­хра­ня­ет за­дан­ное по­ло­же­ние в про­стран­ст­ве. Поль­зу­ясь стрел­кой, скре­п­лён­ной с ос­но­ва­ни­ем, по шка­ле ази­му­та мож­но кон­тро­ли­ро­вать по­во­рот са­мо­лё­та.

Ги­ро­го­ри­зонт, или ис­кусств. го­ри­зонт, по­зво­ляю­щий пи­ло­ту под­дер­жи­вать свой са­мо­лёт в го­ри­зон­таль­ном по­ло­же­нии, ко­гда ес­теств. го­ри­зонт не ви­ден, ос­но­ван на ис­поль­зо­ва­нии Г. с вер­ти­каль­ной осью вра­ще­ния, со­хра­няю­щей своё на­прав­ле­ние при на­кло­нах са­мо­лё­та. В ав­то­пи­ло­тах при­ме­ня­ют­ся два Г. с го­ри­зон­таль­ной и вер­ти­каль­ной ося­ми вра­ще­ния; пер­вый слу­жит для со­хра­не­ния кур­са са­мо­лё­та и управ­ля­ет вер­ти­каль­ны­ми ру­ля­ми, вто­рой – для со­хра­не­ния го­ри­зон­таль­но­го по­ло­же­ния са­мо­лё­та и управ­ля­ет го­ри­зон­таль­ны­ми ру­ля­ми.

С по­мо­щью Г. соз­да­ны ав­то­ном­ные инер­ци­аль­ные на­ви­га­ци­он­ные сис­те­мы (ИНС), пред­на­зна­чен­ные для оп­ре­де­ле­ния ко­ор­ди­нат, ско­ро­сти и ори­ен­та­ции под­виж­но­го объ­ек­та (ко­раб­ля, са­мо­лёта, кос­мич. ап­па­ра­та и т. п.) без ис­поль­зо­ва­ния к.-л. внеш­ней ин­фор­ма­ции. В со­став ИНС кро­ме Г. вхо­дят ак­се­ле­ро­мет­ры, пред­на­зна­чен­ные для из­ме­ре­ния ус­ко­ре­ния (пе­ре­груз­ки) объ­ек­та, а так­же ком­пь­ю­тер, ин­тег­ри­рую­щий по вре­ме­ни вы­ход­ные сиг­на­лы ак­се­ле­ро­мет­ров и вы­даю­щий на­ви­га­ци­он­ную ин­фор­ма­цию с учё­том по­ка­за­ния Г. К нач. 21 в. соз­да­ны на­столь­ко точ­ные ИНС, что даль­ней­ше­го по­вы­ше­ния точ­но­стей для ре­ше­ния мн. за­дач уже не тре­бу­ет­ся.

Раз­ви­тие ги­ро­ско­пич. тех­ни­ки по­след­них де­ся­ти­ле­тий со­сре­до­то­чи­лось на по­ис­ке не­тра­диц. об­лас­тей при­ме­не­ния ги­ро­ско­пич. при­бо­ров – раз­вед­ка по­лез­ных ис­ко­пае­мых, пред­ска­за­ние зем­ле­тря­се­ний, сверх­точ­ное из­ме­ре­ние ко­ор­ди­нат ж.-д. пу­тей и неф­те­про­во­дов, мед. тех­ни­ка и мн. дру­гое.

Неклассические виды гироскопов

Вы­со­кие тре­бо­ва­ния к точ­но­сти и экс­плу­та­ци­он­ным ха­рак­те­ри­сти­кам ги­ро­ско­пич. при­бо­ров при­ве­ли не толь­ко к даль­ней­шим усо­вер­шен­ст­во­ва­ни­ям клас­сич. Г. с вра­щаю­щим­ся ро­то­ром, но и к по­ис­кам прин­ци­пи­аль­но но­вых идей, по­зво­ляю­щих ре­шить про­бле­му соз­да­ния чув­ст­вит. дат­чи­ков для ин­ди­ка­ции и из­ме­ре­ния уг­ло­вых дви­же­ний объ­ек­та в про­стран­ст­ве. Это­му спо­соб­ст­во­ва­ли ус­пе­хи кван­то­вой элек­тро­ни­ки, ядер­ной фи­зи­ки и др. об­лас­тей точ­ных на­ук.

В ги­ро­ско­пе с воз­душ­ной опо­рой ша­ри­ко­вые под­шип­ни­ки, ис­поль­зуе­мые в тра­диц. кар­да­но­вом под­ве­се, за­ме­не­ны «га­зо­вой по­душ­кой» (га­зо­ди­на­мич. опо­рой). Это пол­но­стью уст­ра­ни­ло из­нос ма­те­риа­ла опор во вре­мя ра­бо­ты и по­зво­ли­ло поч­ти не­ог­ра­ни­чен­но уве­ли­чить вре­мя служ­бы при­бо­ра. К не­дос­тат­кам га­зо­вых опор от­но­сят­ся до­воль­но боль­шие по­те­ри энер­гии и воз­мож­ность вне­зап­но­го от­ка­за при слу­чай­ном кон­так­те ро­то­ра с по­верх­но­стью опо­ры.

По­плав­ко­вый ги­ро­скоп пред­став­ля­ет со­бой ро­тор­ный Г., в ко­то­ром для раз­груз­ки под­шип­ни­ков под­ве­са все под­виж­ные эле­мен­ты взве­ши­ва­ют­ся в жид­ко­сти с боль­шой плот­но­стью так, что­бы вес ро­то­ра вме­сте с ко­жу­хом урав­но­ве­ши­вал­ся гид­ро­ста­тич. си­ла­ми. Бла­го­да­ря это­му на мно­го по­ряд­ков сни­жа­ет­ся су­хое тре­ние в осях под­ве­са и уве­ли­чи­ва­ет­ся удар­ная и виб­рац. стой­кость при­бо­ра. Гер­ме­тич­ный ко­жух, вы­пол­няю­щий роль внутр. рам­ки кар­да­но­во­го под­ве­са, на­зы­ва­ет­ся по­плав­ком. Ро­тор Г. внут­ри по­плав­ка вра­ща­ет­ся на возд. по­душ­ке в аэ­ро­ди­на­мич. под­шип­ни­ках со ско­ро­стью по­ряд­ка 30–60 тыс. обо­ро­тов в ми­ну­ту. Для по­вы­ше­ния точ­но­сти при­бо­ра не­об­хо­ди­мо ис­поль­зо­ва­ние сис­те­мы тер­мо­ста­би­ли­за­ции. По­плав­ко­вый Г. с боль­шим вяз­ким тре­ни­ем жид­ко­сти на­зы­ва­ет­ся так­же ин­тег­ри­рую­щим ги­ро­ско­пом.

Рис. 4. Динамически настраиваемый гироскоп с внутренним кардановым подвесом: 1 – ротор; 2 – внутреннее кольцо; 3 и 4 – торсионы; 5 – электродвигатель.

Ди­на­ми­че­ски на­страи­вае­мый ги­ро­скоп (ДНГ) при­над­ле­жит к клас­су Г. с уп­ру­гим под­ве­сом ро­то­ра, в ко­то­рых сво­бо­да уг­ло­вых дви­же­ний оси собств. вра­ще­ния обес­пе­чи­ва­ет­ся за счёт уп­ру­гой по­дат­ли­во­сти кон­ст­рук­тив­ных эле­мен­тов (напр., тор­сио­нов). В ДНГ, в от­ли­чие от клас­сич. Г., ис­поль­зу­ет­ся т. н. внутр. кар­да­нов под­вес (рис. 4), об­ра­зо­ван­ный внутр. коль­цом 2, ко­то­рое из­нут­ри кре­пит­ся тор­сио­на­ми 4 к ва­лу элек­тро­дви­га­те­ля 5, а сна­ру­жи – тор­сио­на­ми 3 к ро­то­ру 1. Мо­мент тре­ния в под­ве­се про­яв­ля­ет­ся толь­ко в ре­зуль­та­те внутр. тре­ния в ма­те­риа­ле уп­ру­гих тор­сио­нов. В ДНГ за счёт под­бо­ра мо­мен­тов инер­ции ра­мок под­ве­са и уг­ло­вой ско­ро­сти вра­ще­ния ро­то­ра осу­ще­ст­в­ля­ет­ся ком­пен­са­ция уп­ру­гих мо­мен­тов под­ве­са, при­ло­жен­ных к ро­то­ру. К дос­то­ин­ст­вам ДНГ от­но­сят­ся их ми­ниа­тюр­ность, от­сут­ст­вие под­шип­ни­ков со спе­ци­фич. мо­мен­та­ми тре­ния, при­сут­ст­вую­щи­ми в клас­сич. кар­да­но­вом под­ве­се, вы­со­кая ста­биль­ность по­ка­за­ний, от­но­си­тель­но не­вы­со­кая стои­мость.

Коль­це­вой ла­зер­ный ги­ро­скоп (КЛГ), на­зы­вае­мый так­же кван­то­вым ги­ро­ско­пом, соз­дан на ос­но­ве ла­зе­ра с коль­це­вым ре­зо­на­то­ром, в ко­то­ром по замк­ну­то­му оп­тич. кон­ту­ру од­но­вре­мен­но рас­про­стра­ня­ют­ся встреч­ные элек­тро­маг­нит­ные вол­ны. К дос­то­ин­ст­вам КЛГ от­но­сят­ся от­сут­ст­вие вра­щаю­ще­го­ся ро­то­ра, под­шип­ни­ков, под­вер­жен­ных дей­ст­вию сил тре­ния, вы­со­кая точ­ность.

Во­ло­кон­но-оп­ти­че­ский ги­ро­скоп (ВОГ) пред­став­ля­ет со­бой во­ло­кон­но-оп­ти­че­ский ин­тер­фе­ро­метр, в ко­то­ром рас­про­стра­ня­ют­ся встреч­ные элек­тро­маг­нит­ные вол­ны. ВОГ яв­ля­ет­ся ана­ло­го­вым пре­об­ра­зо­ва­те­лем уг­ло­вой ско­ро­сти вра­ще­ния ос­но­ва­ния, на ко­то­ром он ус­та­нов­лен, в вы­ход­ной элек­трич. сиг­нал.

Вол­но­вой твер­до­тель­ный ги­ро­скоп (ВТГ) ос­но­ван на ис­поль­зо­ва­нии инерт­ных свойств уп­ру­гих волн в твёр­дом те­ле. Уп­ру­гая вол­на мо­жет рас­про­стра­нять­ся в сплош­ной сре­де, не из­ме­няя сво­ей кон­фи­гу­ра­ции. Ес­ли воз­бу­дить стоя­чие вол­ны уп­ру­гих ко­ле­ба­ний в осе­сим­мет­рич­ном ре­зо­на­то­ре, то вра­ще­ние ос­но­ва­ния, на ко­то­ром ус­та­нов­лен ре­зо­на­тор, вы­зы­ва­ет по­во­рот стоя­чей вол­ны на мень­ший, но из­вест­ный угол. Со­от­вет­ст­вую­щее дви­же­ние вол­ны как це­ло­го на­зы­ва­ет­ся пре­цес­си­ей. Ско­рость пре­цес­сии стоя­чей вол­ны про­пор­цио­наль­на про­ек­ции уг­ло­вой ско­ро­сти вра­ще­ния ос­но­ва­ния на ось сим­мет­рии ре­зо­на­то­ра. К дос­то­ин­ст­вам ВТГ от­но­сят­ся: вы­со­кое от­но­ше­ние точ­ность/це­на; спо­соб­ность пе­ре­но­сить боль­шие пе­ре­груз­ки, ком­пакт­ность и не­боль­шая мас­са, низ­кая энер­го­ём­кость, ма­лое вре­мя го­тов­но­сти, сла­бая за­ви­си­мость от темп-ры ок­ру­жаю­щей сре­ды.

Виб­ра­ци­он­ный ги­ро­скоп (ВГ) ос­но­ван на свой­ст­ве ка­мер­то­на со­хра­нять плос­кость ко­ле­ба­ний сво­их но­жек. В нож­ке ко­леб­лю­ще­го­ся ка­мер­то­на, ус­та­нов­лен­но­го на плат­фор­ме, вра­щаю­щей­ся во­круг оси сим­мет­рии ка­мер­то­на, воз­ни­ка­ет пе­рио­дич. мо­мент сил, час­то­та ко­то­ро­го рав­на час­то­те ко­ле­ба­ния но­жек, а ам­пли­ту­да про­пор­цио­наль­на уг­ло­вой ско­ро­сти вра­ще­ния плат­фор­мы. По­это­му, из­ме­ряя ам­пли­ту­ду уг­ла за­крут­ки нож­ки ка­мер­то­на, мож­но су­дить об уг­ло­вой ско­ро­сти плат­фор­мы. К не­дос­тат­кам ВГ от­но­сит­ся не­ста­биль­ность по­ка­за­ний из-за слож­но­стей вы­со­ко­точ­но­го из­ме­ре­ния ам­пли­ту­ды ко­ле­ба­ний но­жек, а так­же то, что они не ра­бо­та­ют в ус­ло­ви­ях виб­ра­ции, ко­то­рая прак­ти­че­ски все­гда со­про­во­ж­да­ет мес­та ус­та­нов­ки при­бо­ров на дви­жу­щих­ся объ­ек­тах. Идея ка­мер­тон­но­го Г. сти­му­ли­ро­ва­ла це­лое на­прав­ле­ние по­ис­ков но­вых ти­пов Г., ис­поль­зую­щих пье­зо­элек­трич. эф­фект ли­бо виб­ра­цию жид­ко­стей или га­зов в спе­ци­аль­но изо­гну­тых труб­ках и т. п.

Мик­ро­ме­ха­ни­че­ский ги­ро­скоп (ММГ) от­но­сит­ся к Г. низ­ких точ­но­стей (ни­же 10–1°/ч). Эта об­ласть тра­ди­ци­он­но счи­та­лась ма­ло­пер­спек­тив­ной для за­дач управ­ле­ния дви­жу­щи­ми­ся объ­ек­та­ми и на­ви­га­ции. Но в кон. 20 в. раз­ра­бот­ка ММГ ста­ла од­ним из наи­бо­лее ин­тен­сив­но раз­ра­ба­ты­вае­мых на­прав­ле­ний ги­ро­ско­пич. тех­ни­ки, тес­но свя­зан­ным с совр. крем­ние­вы­ми тех­но­ло­гия­ми. ММГ пред­став­ля­ет со­бой свое­об­раз­ный элек­трон­ный чип с квар­це­вой под­лож­кой пло­ща­дью в неск. квад­рат­ных мил­ли­мет­ров, на ко­то­рую ме­то­дом фо­то­ли­то­гра­фии на­но­сит­ся пло­ский виб­ра­тор ти­па ка­мер­то­на. Точ­ность совр. ММГ не­ве­ли­ка и дос­ти­га­ет 101–102°/ч, од­на­ко ре­шаю­щее зна­че­ние име­ет ис­клю­чи­тель­но низ­кая стои­мость мик­ро­ме­ха­нич. чув­ст­вит. эле­мен­тов. Бла­го­да­ря ис­поль­зо­ва­нию хо­ро­шо от­ра­бо­тан­ных совр. тех­но­ло­гий мас­со­во­го про­из­вод­ст­ва мик­ро­элек­тро­ни­ки от­кры­ва­ет­ся воз­мож­ность при­ме­не­ния ММГ в со­вер­шен­но но­вых об­лас­тях: ав­то­мо­би­ли и би­нок­ли, те­ле­ско­пы и ви­део­ка­ме­ры, мы­ши и джой­сти­ки пер­со­наль­ных ком­пь­ю­те­ров, мо­биль­ные ро­бо­то­тех­нич. уст­рой­ст­ва и да­же дет­ские иг­руш­ки.

Не­кон­такт­ный ги­ро­скоп от­но­сит­ся к ги­ро­ско­пич. уст­рой­ст­вам сверх­вы­со­ких точ­но­стей (10–6–5· 10–4 H /ч). Раз­ра­бот­ка Г. с не­кон­такт­ны­ми под­ве­са­ми на­ча­лась в сер. 20 в. В не­кон­такт­ных под­ве­сах реа­ли­зу­ет­ся со­стоя­ние ле­ви­та­ции, т. е. со­стоя­ние, при ко­то­ром ро­тор Г. «па­рит» в си­ло­вом по­ле под­ве­са без к.-л. ме­ха­нич. кон­так­та с ок­ру­жаю­щи­ми те­ла­ми. Сре­ди не­кон­такт­ных Г. вы­де­ля­ют Г. с элек­тро­ста­тич., маг­нит­ным и крио­ген­ным под­ве­са­ми ро­то­ра. В элек­тро­ста­тич. Г. про­во­дя­щий бе­рил­лие­вый сфе­рич. ро­тор под­ве­шен в ва­куу­ми­ро­ван­ной по­лос­ти в ре­гу­ли­руе­мом элек­трич. по­ле, соз­да­вае­мом сис­те­мой элек­тро­дов. В крио­ген­ном Г. сверх­про­во­дя­щий нио­бие­вый сфе­рич. ро­тор под­ве­шен в маг­нит­ном по­ле; ра­бо­чий объ­ём Г. ох­ла­ж­да­ет­ся до сверх­низ­ких темп-р, так, что­бы ро­тор пе­ре­шёл в сверх­про­во­дя­щее со­стоя­ние. Г. с маг­ни­то­ре­зо­нанс­ным под­ве­сом ро­то­ра яв­ля­ет­ся ана­ло­гом Г. с элек­тро­ста­тич. под­ве­сом ро­то­ра, в ко­то­ром элек­трич. по­ле за­ме­не­но маг­нит­ным, а бе­рил­лие­вый ро­тор – фер­ри­то­вым. Совр. Г. с не­кон­такт­ны­ми под­ве­са­ми – это слож­ней­шие при­бо­ры, ко­то­рые во­бра­ли в се­бя но­вей­шие дос­ти­же­ния тех­ни­ки.

Кро­ме пе­ре­чис­лен­ных вы­ше ти­пов Г. про­во­ди­лись и про­во­дят­ся ра­бо­ты над эк­зо­тич. ти­па­ми Г., та­ки­ми, как ион­ный Г., ядер­ный ги­ро­скоп и др.

Математические задачи в теории гироскопа

Ма­те­ма­тич. ос­но­вы тео­рии Г. за­ло­же­ны Л. Эй­ле­ром в 1765 в его ра­бо­те «Theoria motus corporum solidorum sue rigidorum». Дви­же­ние клас­си­че­ско­го Г. опи­сы­ва­ет­ся сис­те­мой диф­фе­рен­ци­аль­ных урав­не­ний 6-го по­ряд­ка, ре­ше­ние ко­то­рой ста­ло од­ной из са­мых зна­ме­ни­тых ма­те­ма­тич. за­дач. Эта за­да­ча от­но­сит­ся к раз­де­лу тео­рии вра­ща­тель­но­го дви­же­ния твёр­до­го те­ла и яв­ля­ет­ся обоб­ще­ни­ем за­дач, ре­шае­мых до кон­ца про­сты­ми сред­ст­ва­ми клас­сич. ана­ли­за. Од­на­ко при этом она на­столь­ко труд­на, что ещё да­ле­ка от за­вер­ше­ния, не­смот­ря на ре­зуль­та­ты, по­лу­чен­ные круп­ней­ши­ми ма­те­ма­ти­ка­ми 18–20 вв. Совр. ги­ро­ско­пич. при­бо­ры по­тре­бо­ва­ли ре­ше­ния но­вых ма­те­ма­тич. за­дач. Дви­же­ние не­кон­такт­ных Г. с вы­со­кой точ­но­стью под­чи­ня­ет­ся за­ко­нам ме­ха­ни­ки, по­это­му, ре­шая урав­не­ния дви­же­ния Г. с по­мо­щью ком­пь­ю­те­ра, мож­но точ­но пред­ска­зы­вать по­ло­же­ние оси Г. в про­стран­ст­ве. Бла­го­да­ря это­му раз­ра­бот­чи­кам не­кон­такт­ных Г. не при­хо­дит­ся ба­лан­си­ро­вать ро­тор с точ­но­стью 10–10 м, ко­то­рую не­воз­мож­но дос­тичь при совр. уров­не тех­но­ло­гии. Дос­та­точ­но точ­но из­ме­рять по­греш­но­сти из­го­тов­ле­ния ро­то­ра дан­но­го Г. и вво­дить со­от­вет­ст­вую­щие по­прав­ки в про­грам­мы об­ра­бот­ки сиг­на­лов Г. По­лу­чаю­щие­ся с учё­том этих по­пра­вок урав­не­ния дви­же­ния Г. ока­зы­ва­ют­ся очень слож­ны­ми, и для их ре­ше­ния при­хо­дит­ся при­ме­нять весь­ма мощ­ные ком­пью­те­ры, ис­поль­зую­щие ал­го­рит­мы, ос­но­ван­ные на по­след­них дос­ти­же­ни­ях ма­те­ма­ти­ки. Раз­ра­бот­ка про­грамм рас­чё­та дви­же­ния Г. с не­кон­такт­ны­ми под­ве­са­ми по­зво­ля­ет су­ще­ст­вен­но по­вы­сить точ­ность Г., а сле­до­ва­тель­но, и точ­ность оп­ре­де­ле­ния ме­сто­по­ло­же­ния объ­ек­та, на ко­то­ром ус­та­нов­ле­ны эти ги­ро­ско­пы.

Гироскоп в смартфоне — что это такое и зачем он нужен? :: SYL.ru

Новейшие смартфоны оснащены многочисленными датчиками. Одним из самых полезных модулей выступает гироскоп. Для чего такое устройство внедряют в системы сотовых телефонов? Гироскоп в смартфоне – что это? Какие функции на него возложены? Обо всем этом пойдет речь в нашей публикации.

Краткий экскурс в историю

зачем нужен гироскоп в смартфоне

Гироскоп — изобретение французского ученого Леона Фуко. Прототип, согласно принципу работы которого функционируют современные устройства, использовался физиком в целях отслеживания особенностей суточного вращения планеты.

Инновационные гироскопы используются не только для отслеживания специфики колебания различных тел. В наши дни основным назначением прибора является определение углов отклонения предметов по отношению к плоскостям. Для чего нужен гироскоп в смартфоне? Комбинирование такого модуля с акселерометром открывает возможность для отслеживания движений телефона в трехмерном пространстве.

Впервые средство сотовой связи с таким модулем на борту представила компания Apple. Случилось это в ходе презентации модели смартфона iPhone 4. Впоследствии инновационному решению стали подражать самые различные разработчики телефонов.

Гироскоп в смартфоне – что это?

есть ли гироскоп в смартфоне

Гироскоп в сотовом телефоне не имеет ничего общего с традиционным механическим устройством. Здесь модуль представляет собой микроскопическую электронную плату, которая способна вычислять угловые скорости, передавая соответствующую информацию в виде электрических сигналов. Как правило, габариты такого чипа составляют всего лишь несколько миллиметров. Если отвечать в общих чертах на вопрос: «Гироскоп в смартфоне — что это?», то несведущему человеку может показаться, что никакой особой пользы владельцу эта фишка не несет — применение устройства направлено всего лишь на определение отклонения мобильного гаджета от собственной оси. Но так ли это?

Отличие гироскопа от акселерометра

для чего нужен гироскоп в смартфоне

Гироскоп в смартфоне – что это? Такой модуль способен передавать данные тем или иным приложениям об угле наклона мобильного гаджета по отношению к земной поверхности. Подобная функция закреплена также за акселерометром. Однако указанные девайсы имеют различный принцип работы. Ведь функционирование акселерометра основано на вычислении собственного ускорения в пространстве. На практике отмеченные возможности обеих систем оказываются взаимозаменяемыми. Именно по этой причине современные смартфоны оснащаются как гироскопом, так и акселерометром.

Функции гироскопа

зачем гироскоп в смартфоне

Зачем нужен гироскоп в смартфоне? Применение датчика открывает следующие возможности. В первую очередь благодаря элементарному встряхиванию мобильного телефона пользователь способен быстро ответить на входящий звонок. Гироскоп позволяет просматривать изображения, переключать аудиозаписи в плеере, облегчает переворачивание страниц во время просмотра текстовых документов.

Еще зачем гироскоп в смартфоне? Чрезвычайно удобным модуль становится при использовании калькулятора. Благодаря отклонению гаджета в ту или иную сторону можно выбирать функции умножения, деления, вычитать и слагать значения.

Разработчики мобильных устройств нашли применение гироскопу также при работе с различными приложениями и программным обеспечением. При встряхивании некоторых устройств автоматически происходит обновление Bluetooth. Очень удобным наличие модуля становится при необходимости измерения уровней и углов наклона.

Гироскоп незаменим в случае работы с электронными картами. Модуль дает возможность определять точное положение пользователя на определенной местности. При запуске навигатора карта будет менять положение вслед за поворотом человека. Если пользователь развернется лицом к тому или иному объекту, это сразу же отобразится на визуальной схеме. Такая функция будет крайне полезной для людей, которые увлекаются активным отдыхом, в частности путешествиями и ориентированием на местности.

Без гироскопа не могут обойтись любители мобильных игр. Функциональный модуль способствует созданию более реалистичной картинки и облегчает управление. Особенно правдоподобными благодаря гироскопу становятся всевозможные симуляторы, шутеры, трехмерные бродилки. Чтобы езда на виртуальной машине либо полет на самолете казались более реальными, достаточно изменения положения смартфона в одной из плоскостей.

Если пользователь мобильного телефона в дальнейшем планирует использовать шлем виртуальной реальности, в таком случае наличие гороскопа выступает обязательным условием. Без датчика станет невозможным отслеживание системой смартфона поворотов головы, перемещения человека в пространстве.

Недостатки

гироскоп в смартфоне что это

Но наличие в смартфоне гироскопа может обернуться минусом, да таким, что отдельные пользователи стараются сразу же отключить функциональный модуль. Речь идет о реакции некоторых приложений на изменения положения сотового телефона в пространстве со значительным запозданием.

Сравнительным недостатком наличия гироскопа в смартфоне выступают неудобства, которые способны возникать при чтении электронной книги. Если пользователь произвольно меняет позу, датчик тут же преобразит ориентацию странички в соответствующей плоскости. Подобные моменты обычно вызывают раздражение.

Как определить, есть ли гироскоп в смартфоне

Узнать о присутствии функционального модуля в системе мобильного устройства можно несколькими способами. Наиболее простой и доступный вариант – ознакомление с описанием модели смартфона на официальном сайте изготовителя либо просмотр прилагающейся к гаджету технической документации.

Существуют и другие решения. Например, можно прибегнуть к установке на телефон специальных приложений. Одним из таковых выступает AnTuTu Benchmark. После инсталляции и запуска приложения достаточно перейти на вкладку «Информация». Через несколько мгновений на экране отобразятся все спецификации смартфона.

В качестве альтернативы вышеуказанному варианту можно воспользоваться утилитой Sensor Sense. Приложение фиксирует данные, которые исходят со всех датчиков, встроенных в мобильное устройство. Если в списке «запеленгованных» модулей не окажется гироскопа, это будет свидетельствовать о его отсутствии.

Сравнение характеристик микромеханических гироскопов / Habr

Недавно узнал о том, что фирма STMicroelectronics анонсировала трехосевой гироскоп A3G4250D, удовлетворяющий жесткому стандарту для автомобильного применения (AEC-Q100). Обещана стоимость $6 при заказах от 1000 шт. Класс цены понятен. Захотелось сравнить паспортные характеристики этого датчика с маститыми моделями от Analog Devices Inc. и других производителей. Пока разбирался с даташитами выяснил, что набор паспортных характеристик ADI и STM, к примеру, неодинаковый. Попутно решил выяснить по каким все-таки попугаям стоит сравнивать датчики, т.е. что является наиболее серьезной проблемой микромеханики. В итоге набрался материал для поста, а может и двух. В данном будет вводная. Сравнение a la «[30 коп. пучок] Vs. [Чугунный мост]» к сожалению не уместилось.

Введение

О принципах работы разных классов микромеханических гироскопов и акселерометров можно написать не одну статью. Существует несколько обособленных видов/классов приборов. Если не вдаваться в подробности, грубо можно сказать следующим образом.
Чувствительным элементом (ЧЭ) микромеханического гироскопа является инерционная масса, закрепленная внутри корпуса на пружинах (упругих консолях полупроводника и пр.). Эта чувствительная масса приводится в колебательное движение по одной из осей датчика. Эта ось является осью возбуждения (входной осью). По этой оси задается рабочий режим. Измерения же производятся по перпендикулярной к ней оси (выходной). Принцип действия заключается в том, что при вращении корпуса вокруг его измерительной оси ( ее еще называют осью чувствительности) чувствительный элемент помимо колебаний вдоль входной оси начинает колебаться еще и вдоль третьей, выходной. Если кто знает, что такое Фигуры Лиссажу, тот легко поймет, что ЧЭ начинает описывать в пространстве окружность (или эллипс).
Так упрощенно работает одноосевой датчик. У двух и трехосевых датчиков комплекс из ЧЭ и измерительной системы как бы обрамляется еще одной системой подвеса/измерителей. Т.е. одна сборка ЧЭ/Подвес/Измерители (пусть это будет сборка для оси Х) сама является колеблющимся ЧЭ для другой сборки (напр., по ОY), которая входит в сборку для измерения по OZ. Возможна, наверняка, и раздельная система.
Специалист по микромеханике в тексте выше сможет найти достаточно некорректностей. Написано грубо и для простоты восприятия. И написано это, чтобы плавно перейти к описанию одной из серьезнейших проблем микромеханики, а именно чувствительность к линейным ускорениям.
В теории колеблющийся ЧЭ не должен чувствовать ускорений и не должно у него быть перекрестных связей (в случае двух- или трехосевых датиков) с другими осями чувствительности (ОЧ). Но вследствие неидеальностей создания трехмерной структуры внутри интегральной микросхемы центры масс ЧЭ смещаются, появляются остаточные напряжения в материале, пружины имеют неодинаковые упругости и т.д. В результате ЧЭ для ОХ начинает реагировать на воздействия по OY, линейные ускорения начинают искажать показания гироскопа. Т.е. в измерениях появляется приращение угловой скорости которого на самом деле нет (случайный дрейф).
Сделать производство ЧЭ идеальным невозможно (или не целесообразно), поэтому в конструкции датчиков появляются дополнительные элементы, нужные для уменьшения чувствительности к упомянутым паразитным воздействиям. В первую очередь простотой и даже самим наличием элементов режекции паразитных воздействий как раз и отличаются дешевые (до $10-15) датчики от датчиков среднего ($30-100) и верхнего ($100+) ценовых диапазонов.
В одной из хабрастатей я обсуждал вопрос пренебрежимости реакции недорогих гироскопов на паразитные воздействия (тут например). Понятно, что для статичного квадракоптера незачем изгаляться. Но ведь это лишь демо-устройство будет использоваться в статике. UAV должен перемещаться, причем иметь достойные динамические характеристики. Иначе зачем он сможет быть использованным? Для поглядеть, а что там за забором?
Про реакцию на вибрации, которые имеют высокую интенсивность в квадракоптерах к примеру, особо рассказывать не нужно. Все знают что это такое. Поэтому считаю, что вопрос чувствительности гироскопов к ускорению и вибрациям очень важен для создания подвижного объекта с нормальной динамикой.
Погрешности микромеханических гироскопов

Первое, что бросается в глаза разработчикам в даташитах к датчикам, это так называемая «стабильность нуля». Ведь кажется, что именно этот параметр в конечном итоге определяет чувствительность датчика, т.е. минимальное входное воздействие, которое датчик почувствует. Так из-за низкой стабильности нуля многих моделей ММГ, до сих пор многие считают, что микромеханические гироскопы (ММГ) не чувствуют вращение Земли. Есть модели ММГ имеющие стабильность нуля немногим более 2 °/час (Земля, как известно вращается со скоростью 15 °/час). Но на практике это не означает, что измерить вращение Земли все-таки удастся.
Как бы то ни было, разработчик смотрит на стабильность нуля. Это понятный параметр, показывающий в каких пределах будет колебаться нуль шкалы датчика в лабораторных условиях. Однако это параметр стабильности «сферического коня в вакууме». В реальности заявленной стабильности не будет. Почему? Да потому, что там указана стабильность (вернее нестабильность) обусловленная внутренними источниками погрешностей. В каких условиях датчик будет работать производитель не сможет предугадать, как и вызванные этими условиями девиации.
Есть два подхода борьбы с погрешностями: аппаратный и алгоритмический (читай программный). Второй подход подразумевает добавление в прошивку БЦЭВМ специальных программных модулей для коррекции ошибок, вызванных паразитными процессами. И этот подход не рекомендуется как оптимальный. В первую очередь сам датчик должен гасить шумы. Центральный мозг должен заниматься не вычищением основного мусора, а финишной обработкой и обсчетом высокоуровневых алгоритмов (навигация, стабилизация, автоматизация). Есть разного рода методические погрешности. Они легко описываются некими формулами, вот их легко компенсировать программно.
К чему все это? А к тому, что правильнее выбрать датчики, оптимальные с точки зрения соотношения цены к точностным характеристикам. И тут главными параметрами выбора будет скорее всего чувствительности гироскопа к линейному ускорению (g-чувствительность) и вибрациям (g²-чувствительность). Почему они главные объясняется ниже.
Температурный гистерезис нуля

ММГ имеют погрешности нуля, которые варьируются в зависимости от температуры внутри корпуса. Для проведения термокомпенсации в ММГ встроены температурные датчики. Их точность особого значения не имеет, важна лишь повторяемость показаний. Но с термокомпенсацией есть проблема — гистерезис. Гистерезис в данном случае — это разница между требуемым значением коррекции для конкретной температуры в двух случаях — когда прибор достигает этой температуры охлаждаясь и в случае, когда он нагревается до той же температуры. См. график ниже.

На этом графике показан температурный гистерезис нуля для ММГ ADXRS453 при изменении температуры от +25°С к +130°С, потом к -45°С и обратно к +25°С. Этот гистерезис имеет место не зависимо от того включен датчик во время колебания температуры или нет. К тому же гистерезис зависит от того, насколько широк диапазон изменения температур.
Ситуация сложная? Нет, не очень. В общем случае ММГ не должны использоваться для определения углов ориентации при отсутствии некоторой внешней референсной системы, которая позволяет сбросить накопившуюся погрешность до некоторого низкого уровня. По той же системе можно определить и текущее смещение нуля. Таким образом, температурные смещение нуля и погрешность масштабного коэффициента при нормальном применении достаточно эффективно могут компенсироваться (пусть и с точностью до некоторой малой, ненулевой величины).
Погрешности из-за вибраций

Как было написано выше, сферический ММГ в вакууме измеряет лишь вращение и ничего другого. Однако из-за несимметричности ЧЭ и неидеальности изготовления все ММГ чувствуют ускорения. Под чувствительностью к ускорениям чаще всего понимают чувствительность к линейному ускорению (g-чувствительность) и к линейным вибрациям (g²-чувствительность). На объекты, движущиеся в поле тяготения Земли, в любом случае действует ускорение (кроме случаев свободного падения). Чувствительность к линейным ускорениям часто оказывается главным источником погрешностей.
ММГ в самом низком ценовом диапазоне оптимизированы прежде всего по стоимости, но не по сопротивлению вибрациям. Они имеют относительно простую механическую систему. Она хоть и отличается живучестью (выдерживает гигантские перегрузки в 10’000 g), но не защищена от вибраций. Малая масса чувствительного элемента -> широкая полоса пропускания. В таких гироскопах чувствительность к ускорению (acceleration effect в даташитах) может быть равна 1000 °/час/g (или 0.3 °/сек/g). И это значение вполне себе нормальное для такого класса датчиков. Но это на порядок выше, чем следует ожидать от точных датчиков. От дешевых датчиков не стоит ожидать стабильности нуля в контексте чувствительности к ускорениям. Даже малые вращения в поле тяготения Земли приводят к огромным погрешностям из-за их чрезвычайной чувствительности к ускорению и вибрациям. К слову сказать, «aceleration effect» я не нашел в даташите к A3G4250D от STMicroelectronics. Этот параметр не специфицируется для данного класса датчиков. Он просто подразумевается большим. Ниже представлена сравнительная таблица для некоторых моделей ММГ более высокого класса.

В этой таблице представлены датчики, относящиеся к классу точных. И даже для них оба параметра не всегда указываются производителем.
Часто для компенсации чувствительности к ускорению пользуются коррекцией по показаниям акселерометра. Ниже пример из комментариев к хабрапосту «Использование инерциальной навигационной системы (ИНС) с несколькими датчиками на примере задачи стабилизации высоты квадрокоптера» на тему квадрокоптеров:
Если дрифт постоянный и всегда в одну сторону — это всего лишь говорит о неправильной калибровке 0. В MultiWii 0 гир калибруется при каждом включении, но неидеально (округляется до целого), если ввести хотя бы десятые становится намного лучше. Но в данном применении гироскопа, даже ощутимый дрейф не страшен, так как есть референсная ориентация (компасс и акселерометр) по которой он исправляется.

Но оказывается дрейф из-за чувствительности к ускорениям зависит от частоты с которой это ускорение меняется. Ниже представлены графики зависимости выходного сигнала ММГ CRG20-01 (в штучных поставках в виде demo-board обойдется, если не ошибаюсь, в районе $100-150 с доставкой) от частоты изменения приложенного ускорения.

На графике видно, что от амплитуды ускорения погрешность не зависит. А вот от частоты зависимость имеется. И просто так эту погрешность не скомпенсируешь (большая вариация и сложная кривая изменения чувствительности). Скомпенсировать g²-чувствительность, если она постоянна, несложно. Но опять же не все производители в даташитах указывают графики для этого параметра. Разработчику часто приходится самому экспериментально строить эти графики. И часто это производится в полевых условиях на уже запущенных в эксплуатацию приборах.
Еще одна засада с коррекцией по акселерометрам — согласование фаз. В общем случае собственные частоты акселерометра и гироскопа не совпадают, да и частотные характеристики вообще. Поэтому при различных частотах вибраций ММА и ММГ будут выдавать разные смещения по фазе выходного сигнала относительно вибраций на входе. В конечном итоге коррекция по акселерометру может увеличить! погрешность вместо ее гашения. Случится это, если разница между смещениями по фазе ММА и ММГ будет приближаться к значению 3,14 радиан (180 градусов).
В итоге, т.к. чувствительность к вибрациям и ускорениям сильно варьируется даже в рамках одной модели датчика или она слишком велика, производитель ее просто не указывает. Правда нужно заметить, на самом деле достаточно трудно протестировать датчики на чувствительность к вибрациям. Проблемы носят как технический, так и методологический характер.
Для снижения чувствительности к вибрациям можно, конечно крепить датчики через резиновый изолятор. Но сделать так, чтобы этот подвес имел равномерное распределение характеристик для широкого диапазона частот, да еще и не менял их при старении очень сложно.
Ниже представлено сравнение погрешностей из-за чувствительности к ускорению и вибрациям, когда не используется g-компенсация (в гр/сек).

А в следующей таблице представлены погрешности, которые остаются даже после введения g-компенсации (в гр/сек).

Как видим даже при введении g-компенсации погрешность от чувствительности к ускорениям все равно может быть больше погрешности от температурной нестабильности нуля (см. график гистерезиса выше).
Выводы

Написанное выше говорит о том, что не всегда самый очевидный параметр точности является и главным критерием выбора датчиков. «Под свечей всегда темно», — говорит народная мудрость. То, что недостаточно четко описано в даташите или вообще не указано может сыграть решающую роль в успешности проекта. Можно заострить внимание на стабильности нуля и дисперсии шумов, а ведь их можно победить несложными алгоритмами (усреднять во времени или с использованием избыточных измерительных блоков). Зато погрешность от вибраций, как мы увидели выше на примере CRG20-01, может оказаться трудным описать в алгоритме. Долгое время стабильность нуля является золотым стандартом выбора ММГ. Однако на практике большее влияние на точность может оказать чувствительность к ускорениям и вибрациям.
Заключение

Хотел сделать пост, содержащий две части — 1) Обоснование выбора критерия сравнения и 2) Сравнение по ТТХ моделей от Analog Devices Inc., Silicon Sensing, Sensonor и STMicroelectronics. Однако и так получилось «многабукв». Если будет интересно, постараюсь в скором времени сравнить по даташитам датчики упомянутых фирм с разъяснением о физическом смысле основных характеристик.

UPD: поправлены некоторые опечатки и грамматические ошибки.

Что такое гироскоп в смартфоне и зачем он нужен?

Что такое гироскоп в смартфоне и зачем он нужен?Что такое гироскоп в смартфоне и зачем он нужен?

Множеством интересных функций и датчиков оснащены смартфоны и другие мобильные устройства. Одним из ведущих модулей является гиродатчик или гироскоп. Диковинная новинка в девайсе, выполненная на основе микроэлектромеханической системы, сделала большой рывок в усовершенствование функционала и завоевала большую симпатию среди пользователей. Происхождение слова «гироскоп» имеет давнюю историю. Оно расшифровывается как словосочетание «круг» и «смотрю».

Родоначальником древнегреческого изречения был французский физик Леон Фуко. В XIX веке он занимался исследованием суточного вращения Земли, и этот термин подошёл для нового устройства как нельзя кстати. Гиродатчиками пользуются авиакомпании, судоходство, космонавтика. Компания Apple, производитель современных мобильных телефонов, первой взяла за основу данный функционал и внедрила его в iPhone 4. Несмотря на то, что видео ниже на английском языке, демонстрация технологии от Стив Джобса понятна без перевода.

Теперь, для того чтобы ответить на входящие звонки или полистать страницы электронной книги, достаточно только встряхнуть телефон. За счёт устройства быстро просматриваются фотографии и другие изображения, меняется музыка. Новое приложение у смартфона iPone под названием CoveFlow позволило использовать калькулятор. Теперь легко выполняются такие функции, как деление, умножение, сложение и вычитание. При повороте телефона на 90° данная функция машинально переключается на развёрнутый функционал со множеством сложных математических действий.

Наряду с легкими функциями разработчики внедрили в устройство более сложные программные обеспечения. Например, в некоторых операционных системах при помощи встряхивания телефона запускается обновление для Bluetooth или запускается специфичная программа по измерению углов наклона и уровня. Гироскоп прекрасно учитывает скорость перемещения, и определяет местоположение человека на незнакомой местности.

Принцип работы акселерометраПринцип работы акселерометра

С технической точки зрения, гироскоп довольно сложное устройство. При его разработке, за основу взяли принцип работы акселерометра, который представляет из себя колбу с пружиной и грузом внутри. На одной стороне пружины закреплен груз, а вторая сторона пружины зафиксирована на демпфере для гашения колебания. При встряхивании (ускорении) измерительного прибора, прикрепленная масса движется и приводит в напряжение пружину.

Три акселерометра расположенных перпендикулярно дают возможность рассчитать положение тела в пространствеТри акселерометра расположенных перпендикулярно дают возможность рассчитать положение тела в пространстве

Такие колебания можно представить в виде данных. Если расположить три таких акселерометра перпендикулярно, то можно получить представление о том, как расположен предмет в пространстве. Поскольку технически расположить такой громоздкий измерительный прибор в смартфоне невозможно, то принцип работы оставили тот же, но груз заменили инертной массой, который расположен в очень маленьком чипе. При ускорении, меняется положение инертной массы и таки образом рассчитывается положение смартфона в пространстве.

Как работает гироскоп в смартфонеКак работает гироскоп в смартфоне

С помощью GPS-навигации на дисплее появляется карта, которая фиксирует аналогичное направление объектов при любом повороте тела. Другими словами, если вы повернулись лицом к реке, то она автоматически отобразится на карте. При развороте на 180 градусов к водоему мгновенно происходят аналогичные изменения на мониторе. С использованием этой функции упрощается ориентировка на местности. Особенно это важно людям, занимающимся активными видами отдыха.

Благодаря точному учёту скорости перемещения управление смартфоном становится более удобным и гармоничным. Зачастую используют гироскопы на Андроид любители компьютерных игр — геймеры. Уникальное устройство в девайсе молниеносно превращает картинки в реальность. Особенно правдоподобными становятся гонки, симуляторы, стрелялки, Pokemon Go.

По какому принципу работает гироскоп в смартфонеПо какому принципу работает гироскоп в смартфоне

Достаточно изменить положение смартфона и скорость поворота, то езда на виртуальном автомобиле покажется вам реальной. Герои на дисплее точно направят автомат, нацелят пушку, повернут руль, поднимут в воздух вертолёт, убьют врага. Карманные монстры не будут прыгать по виртуальной траве, а станут двигаться по настоящему миру в видимой области встроенной камеры.

Конечно, это далеко не весь перечень положительных характеристик, присущих Android смартфонам и iPhone. Перечислять приятные и удобные моменты можно бесконечно. Однако не все пользователи оценили универсальные качества по достоинству. Одни предпочли отказаться от гироскопа в новом смартфоне, другие просто отключили его. И этому есть своё объяснение.
Среди многочисленных плюсов бывают малозаметные минусы.

  1. Из недостатков следует выделить установку отдельных приложений, реагирующих с незначительным опозданием на изменения положений в пространстве. Вроде бы сущий пустяк, но наличие этого сенсора доставляет определённые неудобства пользователю смартфона. Особенно заметны недостатки при чтении электронной книги лёжа. Читающий меняет позу, в это же время, связанный с устройством гиродатчик изменяет положение странички. Приходится в срочном порядке перенастраивать её ориентацию.
  2. Производители смартфонов на своих презентациях в большинстве случаев умалчивают о наличии важного датчика. При покупке новой модели присутствие гироскопа можно обнаружить в технических характеристиках гаджета в перечне датчиков. Есть и другие способы, например, установка клиента YouTube, позволяющая быстро установить функционал. Использование приложения AnTuTu Benchmark, Sensor Sense также устанавливает встроенный гиродатчик или его отсутствие.

Современный элемент смартфона работает на постоянной основе. Это самостоятельный датчик, не требующий калибровки. Его не нужно ни включать, ни отключать. Автоматика сделает эту работу за вас. В случае если устройство отсутствует, то вы не сможете играть в виртуальную реальность. Вам просто придётся купить новый телефон со встроенными функциями.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Читайте также

Поделитесь в соцсетях:

  • 1

    0

    Как я понимаю, смотря по какой оси. Если вокруг Z или X (большинство вращений), то нет, а если вокруг Y, то да. Но вращение вокруг Y можно отследить и компасом (но искусственные поля от приборов могут мешать).

  • 1

    0

    Для поворота экрана не нужен гироскоп, достаточно акселерометра.

  • 1

    0

    А сами как думаете?

  • 2

    0

    Здравствуйте, в первую очередь спасибо большое за такую интересную и полезную статью,я узнал очень многое. Но вот возник один вопрос, а обычный поворот экрана в телефоне тоже считается результатом работы гиродатчика?

  • 1

    0

    Гироскоп действительно маленькая, но высокотехнологичная и зачастую незаменимая вещь в смартфоне. Лично мне как охотнику очень помогает в определении пройденного пути, использовании программного компаса, а так же при просмотре карт в различном разрешении.

  • 1

    0

    Статья не только познавательная,но и с технической точки зрения точно обоснована и аргументирована. Автор детально и при этом доступно раскрывает тему. Большое спасибо.

  • 1

    0

    Данная функция в современных реалиях действительно востребована в смартфонах и планшетах. Все мы когда-то чего-то не знали и только лишь немногие продолжают интересоваться и чему-то учиться. Все поправимо. Удачи!

  • 1

    0

    Познавательная статья! Пользуюсь каждый день телефоном, а как он устроен по сути и не знаю. Привыкла, что если функция поворота экрана включена, то она работает. Современные геймеры наверно уже не представляют своей жизни, без этого гиродатчика, ведь они бы не смогли бы играть в того же самого Покемон ГО.

ГИРОСКОП — это… Что такое ГИРОСКОП?

  • гироскоп — гироскоп …   Орфографический словарь-справочник

  • ГИРОСКОП — ГИРОСКОП, симметричный вращающийся диск, который может подстроиться под любое направление; прикреплен к кардановому шарниру (паре колец, свободно движущихся один в другом). Когда гироскоп вращается, изменение направления карданового шарнира не… …   Научно-технический энциклопедический словарь

  • ГИРОСКОП — (греч., от gyros круг, и skopein смотреть). Прибор, придуманный Фуко для доказательства вращения земли, основанный на отклонении плоскости качания маятника. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ГИРОСКОП… …   Словарь иностранных слов русского языка

  • ГИРОСКОП — (от гиро… и скоп) твердое тело, быстро вращающееся вокруг имеющейся у него оси вращения. При этом ось вращения гироскопа должна иметь возможность свободно поворачиваться в пространстве, для чего гироскоп обычно закрепляют в т. н. кардановом… …   Большой Энциклопедический словарь

  • ГИРОСКОП — (от греч. gyros круг, gyreuo кружусь, вращаюсь и skopeo смотрю, наблюдаю), быстро вращающееся симметричное тв. тело, ось вращения к рого (ось симметрии) может изменять своё направление в пр ве. Г. обладает рядом интересных св в, наблюдаемых у… …   Физическая энциклопедия

  • ГИРОСКОП — (Gyroscope) быстро вращающийся вокруг оси симметрии диск или маховик с большой массой, сосредоточенной преимущественно на периферии, обладающий основным свойством сохранять постоянное положение оси вращения в пространстве. Всякая попытка вывести… …   Морской словарь

  • гироскоп — Устройство, содержащее материальный объект, который совершает быстрые периодические движения, и чувствительное вследствие этого к вращению в инерциальном пространстве. Примечания 1. Термин «гироскоп» чаще всего используется для… …   Справочник технического переводчика

  • гироскоп — сущ., кол во синонимов: 4 • виброгироскоп (1) • волчок (4) • жироскоп (1) • …   Словарь синонимов

  • гироскоп — а, м. gyroscope m. Г. или жироскоп волчок, прибор со свободной осью, вращающийся с большой скоростью; обладает устойчивостью при разных положениях; применяется для замены магнитного компаса на самолетах и судах. СИС 1954. Жироскопический компас… …   Исторический словарь галлицизмов русского языка

  • ГИРОСКОП — (от греческого gyros круг, gyreuo кружусь, вращаюсь и …скоп), твердое тело, быстро вращающееся вокруг одной из своих осей симметрии (так называемой оси гироскопа), которая не закреплена и может изменять свое направление в пространстве лишь под… …   Современная энциклопедия

  • ГИРОСКОП — и жироскоп, гироскопа, муж. (от греч. gyros круглый и skopeo смотрю) (спец.). Прибор в виде вращающегося на вертикально стоящей оси тела, служащий для поддерживания в состоянии равновесия каких нибудь предметов. Волчок устроен по принципу… …   Толковый словарь Ушакова

  • MPU-6050 – гироскоп – акселерометр

    Трехосевой гироскоп с трехосевым акселерометром MPU-6050 очень доступен по цене, чем и приобрел себе популярность. Этот датчик применяется для определения положения в пространстве, в системах стабилизации положения, стабилизации прямолинейного движения и движения по заданной кривой. Например, в балансирных роботах, в игровых приставках, применяется в робототехнике, для измерения углов наклона, скорости вращения, в авиамоделизме его применяют в автопилотах. Датчик может применяться для измерения перегрузок и тому подобное.

    Схема подключения

    Для подключения к контроллеру или микрокомпьютеру, у датчика имеется шина I2C.

    Документация по датчику скачать здесь: MPU-6000 and MPU-6050 Product Specification Revision 3.2
    Описание регистров здесь: MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.0

    Скачать примеры на Python

    Для Raspberry Pi (OS: Raspbian) примеры скриптов можно скачать и развернуть так:

    git clone https://github.com/avislab/sensorstest.git

    Калибровка

    Если считать данные с датчика можно заметить некоторую погрешность. Например, при абсолютном покое датчика показания гироскопа будут отличаться от нуля.
    А показания акселерометра по модулю могут превышать 1. См. работу скрипта mpu6050_get_raw_no_calibr.py. Дело в том, что каждый экземпляр датчика требует калибровки. У некоторых цифровых датчиков можно встретить корректировочные коэффициенты, которые для каждого экземпляра прошивают в память датчика на этапе производства. К сожалению, в этом датчике такого нет, и мы сами должны позаботиться о калибровке. Показания датчиков имеют некоторое смещение относительно нуля, что и вносит погрешность в измерения. Нам нужно учесть это смещение для каждой оси гироскопа и каждой оси акселерометра и вносить корректировку при расчетах.

    На самом деле присутствуют и другие погрешности. Например, трехосевые датчики должны располагаться взаимно перпендикулярно. Но при производстве трудно добиться абсолютной точности, поэтому этот угол также имеет определенные допуски и влияет на погрешность. Кроме того показания датчиков с трех осей могут иметь разную пропорциональность. В данном случае наибольшая погрешность из-за смещения относительно нуля.


    В примере я предусмотрел процедуру калибровки. Скрипт калибровки: mpu6050_calibr.py. Калибровка выполняется в два этапа. Сначала датчик должен быть неподвижен. Подразумевается, что угловые скорости равны нулю. Калибруется гироскоп. Затем калибруется акселерометр. Нужно его не спеша поворачивать во всех направлениях. Эта процедура занимает около минуты. После чего функция калибровки выдает вычисленные значения, которые нужно прописать в скрипте. На этом калибровка закончена. После калибровки погрешность значительно снизится. См. Скрипт: mpu6050_get_raw.py. В этом скрипте в следующих строках указываются калибровочные данные:

    mpu.gyro_offs = {'x': -178, 'y': 259, 'z': -104}
    mpu.accel_offs =  {'y': -354, 'x': 389, 'z': -1482}
    
    

    Гироскоп

    Гироскоп измеряет угловые скорости по трем осям с разными пределами измерений: 250, 500, 1000, и 2000 градусов в секунду. Пределы измерения могут быть выставлены в соответствии с Вашими задачами. Не стоит устанавливать без необходимости максимальные пределы, если у вас достаточно медленная система. Правильно выбранные пределы повысят точность измерений.

    Для тех, кто ранее был знаком с механическими гироскопами, могут возникнуть некоторые неопределенности. Дело в том, что механические гироскопы стабилизируются в пространстве за счет своих физических свойств. Электронные гироскопы этого делать не могут, они лишь измеряют скорость вращения вокруг осей и ничего не могут сообщить о текущем положении системы.

    С помощью электронного гироскопа можно определить положение системы следующим образом. При включении принять начальное положение за нулевую позицию. Затем опрашивать гироскоп с заданным интервалом, зная интервал и скорость вращения, вычислять смещение и добавлять к текущему положению. При этом мы предполагаем, что между двумя опросами датчика система поворачивалась с постоянной скоростью. Такой подход ведет к неизбежному накоплению ошибки. Что видно на примере. Смотри работу скрипта: mpu5060_gyro.py  или скрипта, графически отображающего положение гироскопа pyplay_gyro.py.

    Акселерометр

    Для определения положения системы можно использовать трехосевой акселерометр. Акселерометр также имеет настраиваемые пределы измерений ±2g, ±4g, ±8g і ±16g. Эти пределы устанавливаются в зависимости от динамичности Вашей системы. Напомню, что на любое тело действует сила притяжения. В состоянии покоя g=1. В состоянии свободного падения, когда тело движется к земле с ускорением 9,81 м/с2 – g=0. При разных ускорениях g будет разным. Чем выше ускорение, тем больше g. Поэтому если у Вас достаточно медленная, задемпфированная система, которая физически не способна быстро ускоряться, не стоит устанавливать максимальные пределы измерений. Правильно выбранный диапазон измерений упростит в будущем фильтрацию показаний датчика.

    Когда мы поворачиваем датчик в пространстве, показания акселерометра на каждой из трех осей будет изменяться в зависимости от положения. Так, с помощью трехосевого акселерометра под воздействием силы тяжести можно определить положение системы. См. работу скрипта mpu6050_accel_no_filter.py.

    Мы видим, что значения достаточно зашумлены. Попробуем их фильтровать. Я применил очень упрощенный фильтр Калмана. См. работу скрипта mpu6050_accel_kf.py. Показания стали более стабильными, однако в нашем случае фильтр малополезен. Если датчик потрясти, мы увидим, что показания углов изменяются и иногда очень сильно, хотя мы его не поворачиваем, а перемещаем с ускорением вдоль осей. Это логично, поскольку на акселерометр теперь кроме силы тяжести действует дополнительная сила, и результирующий вектор изменяет направление. Наглядно это видно на примере скрипта pyplay_accel.py (в этом скрипте фильтрация не используется). Здесь простая фильтрация только частично улучшает ситуацию. В решении этой проблемы нам поможет гироскоп. Именно он может нам сказать, что система-то не вращалась, и поэтому мы можем эти колебания отфильтровать.

    Совместное использование гироскопа и акселерометра

    Использование отдельно акселерометра или отдельно гироскопа не даст желаемого результата, только их совместное использование с применением фильтрации с учетом показаний двух датчиков дает приемлемый результат. В примере реализован один из способов комплементарного фильтра. Он достаточно прост и работает следующим образом.
    За первоначальное положение принимается положение, вычисленное на основании данных акселерометра. Затем с заданным интервалом вычисляются положение на основе данных гироскопа и положение на основе данных акселерометра. Затем вычисленные показания сводятся в общий финальный результат. При этом акселерометр корректирует “дрейф” гироскопа, а гироскоп сглаживает скачки акселерометра при вибрациях и ускорениях. Математически это представляется следующей формулой.

    См. работу скрипта mpu6050_final.py или скрипта pyplay_final.py, который графически изображает процесс работы MPU-6050

    MotionApps

    Если Вам не хочется усложнять себе жизнь с реализацией собственного фильтра, или вычислительных мощностей не достаточно для его работы, можно пойти другим путем. Применительно к этому датчику существует понятие MotionApps. Это некий бинарный код, который записывается в память датчика. Код записывается в энергозависимую память, поэтому его нужно записывать каждый раз после подачи питания. Это занимает около секунды. Код собирает и фильтрует показания со всех осей акселерометра и гироскопа. Данные складываются в буфер FIFO. Собственно, Вам остается дождаться готовности данных и считать буфер со всеми показаниями. Пример на Питоне, который я нашел на GiHub: https://github.com/cTn-dev/PyComms/tree/master/MPU6050

    Кто использует Arduino, тоже без труда найдут в интернете аналогичные примеры.

    В особенности работы MotionApps я не вникал. Думаю, это тема для отдельной статьи. Меня больше интересовала собственная реализация на Python.

    Визуализация

    Для наглядности я привел несколько простых примеров для графического отображения положения системы. В этих примерах используется pygame. Запуск этих скриптов рекомендуется выполнять из графической оболочки.

    Успехов.

    Смотри также:
    Разное

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о