Дисплей fwvga что это – VGA (D-Sub) — виды, характеристики, особенности, распиновка, плюсы и минусы разъема, актуальность на сегодня

alexxlab
alexxlab
11.04.2020

Содержание

Новый смартфон Sony Xperia M с FWVGA-дисплеем на Google Android

Выпуск очередного мобильного телефона привлек очень много отзывов от критиков — не всем нравиться новая фишка компании Sony, но все ли так плохо на само деле?
Данный смартфон был выпущен буквально пару дней назад без каких-либо уникальных характеристик или технических новинок, но все же телефон должен привлечь к себе огромное внимание благодаря многим характеристикам, которых нету у других телефонов. Все таки компания Sony умеет заинтересовать пользователя своими девайсами. Они вроде бы не имеют ничего мощного или инновационного, но все равно покупатели уже готовы купить этот телефон за любые деньги. А ведь девайс позиционируется как бюджетный и стоять будет от силы 200-250 долларов. Что может быть лучше красивого и интересного смартфона от Sony за цену в два раза меньшую чем любой другой телефон. Но вот дело в том, что многие критики немного не позитивно отзываются об этом смартфоне и даже говорят ,что его выпустили зря. Так ли это нам и предстоит разобраться дальше в этой новости.

Первое, что бросается в глаза это дизайн данного гаджета. Он выполнен точно так же как и все остальные телефоны в этой линейке – красивый, стильный и легкий. Передняя панель полностью зеркальная и на ней, при выключенном экране, можно легко рассмотреть свое лицо. Задняя часть выполнена из пластика с покрытием софт-тач, так что держать телефон в руке будет удобно и приятно. Углы немного скруглены со всех сторон и это радует сразу по двум причинам – во-первых телефон удобно переворачивать в руке и вообще пользоваться и краска на острых углах стирается в разы быстрее, чем на скругленных. В плане дизайна телефон точно выигрывает у любого своего конкурента, ведь над дизайном бюджетных телефонов редко кто-то долго работает и они часто получаются некрасивыми и немного уродливыми, чего точно нельзя сказать об этом телефоне. Но ведь телефон не будут покупать только из-за дизайна, тут нужно иметь еще что-то в запасе и Sony Xperia M точно имеет пару козырей.

Дисплей у телефона не самый большой на рынке, но это даже немного радует – не каждый покупатель хочет таскать с собой большую лопату в кармане. Диагональ дисплея достигает 4 дюйма и этого вполне хватит для того, что бы играть в игры, смотреть фильмы и заниматься самыми разными делами на своем новеньком телефоне. Особенность этого дисплея в том, что он выполнен по технологии FWVGA с расширением 854×480 пикселей. Это не самый крутой экран в плане расширения, но он в разы выигрывает своих конкурентов по критерию цветопередачи и реалистичности цветов. Теперь можно будет смотреть на картинку или фотографию и реально понимать что это за цвет. Маленький, но очень весомый бонус для данного смартфона.

В плане начинки телефон не получил чего-то очень мощного, но то, что получил телефон вполне хватит для того, что бы работать с любыми приложениями. Процессор Qualcomm MSM8227 с двумя физическими ядрами и тактовой частотой 1 гигагерц телефон легко запустит игры 2013 года и приложения любого веса. Оперативной памяти 1 гигабайт, а флеш-памяти 4 гигабайта, но Вы можете вставить сюда карту памяти на 64 гигабайта. Так что мечта на фильмы и музыку точно хватит. Аккумулятор объемом 1750 мАч не самый большой, конечно, но его хватит для полноценной работы на протяжении целого дня.

Новый телефон получил операционную систему 4.1 Jelly Bean, но скоро должно выйти обновление до 4.2. В этом плане телефон выигрывает у своих конкурентов, которые не получают обновлений вообще. А вообще телефон даже без этой особенности просто отличный, красивый и для бюджетного телефона он очень даже мощный. Осталось только дождаться выхода телефона на рынок и купить его.

Разрешение экрана монитора — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 ноября 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 27 ноября 2019; проверки требует 1 правка. Данная схема изображает стандартные разрешения экрана, цвет каждого типа разрешения указывает соотношение сторон экрана (например, красный цвет обозначает соотношение, равное 4:3)

Разрешением экрана монитора обычно называют размеры получаемого на экране изображения в пикселях: 800 × 600, 1024 × 768, 1280 × 1024, подразумевая разрешение относительно физических размеров экрана, а не эталонной единицы измерения длины, такой как 1 дюйм. Для получения разрешения в единицах ppi данное количество пикселей необходимо поделить на физические размеры экрана, выраженные в дюймах. Двумя другими важными геометрическими характеристиками экрана являются размер его диагонали и соотношение сторон.

Разрешение — величина, определяющая количество точек (элементов растрового изображения) на единицу площади (или единицу длины). Более высокое разрешение (больше элементов) обычно обеспечивает более точные представления оригинала изображения.

Как правило, разрешение в разных направлениях одинаково, что даёт пиксель квадратной формы. Но это не обязательно — например, горизонтальное разрешение может отличаться от вертикального, при этом элемент изображения (пиксель) будет не квадратным, а прямоугольным.

Для типичных разрешений мониторов, индикаторных панелей и экранов устройств (inherent resolution) существуют устоявшиеся буквенные обозначения:

Обзор по вертикальным разрешениям и соотношениям сторон Левая колонка по высоте в пикселях, другие колонки показывают ширину в пикселях для каждого формата.
Lines 5:4 = 1,25 4:3 = 1,3 3:2 = 1,5 16:10 = 1,6 5:3 = 1,6 16:9 = 1,7 64:27 = 2,370
120 160 QQVGA (hVGA)
160 240 HQVGA
240 320 QVGA 360 WQVGA 384 WQVGA 400 WQVGA 432 FWQVGA (18:10)
320 480 HVGA
360 480 640 nHD
384 512 qXGA
480 640 VGA 720 WVGA 800 WVGA 854 FWVGA
540 720 960 qHD
576 1024 WSVGA
600 800 SVGA 1024 WSVGA (128:75)
640 800 960 DVGA 1024 1136
720 960 1152 1200 1280 HD/WXGA
768 1024 XGA 1152 WXGA 1280 WXGA 1366 WXGA
800 1280 WXGA
864 1152 XGA+ 1280 1536
900 1440 WXGA+ 1600 HD+
960 1280 SXGA x 1440 WSXGA
1024 1280 SXGA
1050 1400 SXGA+ 1680 WSXGA+
1080 1440 1920 FHD 2560
1152 2048 QWXGA
1200 1600 UXGA 1920 WUXGA
1440 1920 2560 (W)QHD
1536 1920 2048 QXGA
1600 2560 WQXGA
1620 2880
1800 2880 3200 WQXGA+
2048 2560 QSXGA 3200 WQSXGA (25:16=1.5625)
2160 3840 UHD (4K)
2400 3200 QUXGA 3840 WQUXGA
2880 5120
3072 4096 HXGA
3200 5120 WHXGA
3240 5760
4096 5120 HSXGA 6400 WHSXGA (25:16=1.5625)
4320 7680 UHD (8K)
4800 6400 HUXGA 7680 WHUXGA
Список всех (основных и промежуточных) форматов видеоизображений, отображаемых на различных панелях и компьютерных мониторах
Название формата Количество отображаемых на мониторе точек Пропорции соотношениям сторон изображения Размер изображения
LDPI 23 × 33 759 пикс
23 × 38 768 пикс
MDPI 32 × 44 8:11 1,408 пикс
TVDPI 42,6 × 58,5 2,492 пикс
HDPI 48 × 66 8:11 3,168 пикс
XHDPI 64 × 88 8:11 5,632 пикс
XXHDPI 96 × 132 8:11 12,672 пикс
QVGA 320 × 240 4:3 76,8 кпикс
SIF (MPEG1 SIF) 352 × 240 22:15 84,48 кпикс
CIF (NTSC) (MPEG1 VideoCD) 352 × 240 11:9 84,48 кпикс
CIF (PAL) (MPEG1 VideoCD) 352 × 288 11:9 101,37 кпикс
WQVGA 400 × 240 5:3 96 кпикс
[MPEG2 SV-CD] 480 × 576 5:6 276,48 кпикс
HVGA 640 × 240 или 320 × 480 8:3 или 2:3 153,6 кпикс
nHD 640 × 360 16:9 230,4 кпикс
VGA 640 × 480 4:3 307,2 кпикс
2CIF (NTSC) (Half D1) 704 × 240 44:15 168,96 кпикс
2CIF (PAL) (Half D1) 704 × 288 22:9 202,7 кпикс
SATRip 720 × 400
9:5
288 кпикс
4CIF (NTSC) (D1) 704 × 480 44:30 (22:15) 337,92 кпикс
4CIF (PAL) (D1) 704 × 576 22:18 (11:9) 405,5 кпикс
WVGA 800 × 480 5:3 384 кпикс
SVGA 800 × 600 4:3 480 кпикс
FWVGA 854 × 480 16:9 409,92 кпикс
qHD 960 × 540 16:9 518,4 кпикс
WSVGA 1024 × 600 128:75 614,4 кпикс
XGA 1024 × 768 4:3 786,432 кпикс
XGA+ 1152 × 864 4:3 995,3 кпикс
WXVGA 1200 × 600 2:1 720 кпикс
HDV 720p (HD 720p) 1280 × 720 16:9 921,6 кпикс
WXGA 1280 × 768 5:3 983,04 кпикс
SXGA 1280 × 1024 5:4 1,31 Мпикс
16CIF 1408 × 1152 11:9 1,62 Мпикс
WXGA+ 1440 × 900 16:10 1,296 Мпикс
SXGA+ 1400 × 1050 4:3 1,47 Мпикс
HDV 1080i (Анаморфный Full HD с неквадратным пикселем) 1440 × 1080 4:3 1,55 Мпикс
XJXGA 1536 × 960 16:10 1,475 Мпикс
WSXGA ? 1536 × 1024 3:2 1,57 Мпикс
WXGA++ (HD+) 1600 × 900 16:9 1,44 Мпикс
WSXGA 1600 × 1024 25:16 1,64 Мпикс
UXGA 1600 × 1200 4:3 1,92 Мпикс
WSXGA+ 1680 × 1050 16:10 1,76 Мпикс
HDTV (Full HD) (FHD) 1080p 1920 × 1080 16:9 2,07 Мпикс
WUXGA 1920 × 1200 16:10 2,3 Мпикс
2K DCI (Cinema 2K) 2048 × 1080 19:10 2,2 Мпикс
QWXGA 2048 × 1152 16:9 2,36 Мпикс
QXGA 2048 × 1536 4:3 3,15 Мпикс
2560 × 1080 64:27 2,76 Мпикс
WQXGA (WQHD) (QHD) 2560 × 1440 16:9 3,68 Мпикс
WQXGA 2560 × 1600 16:10 4,09 Мпикс
QSXGA 2560 × 2048 5:4 5,24 Мпикс
WQXGA+ 3200 × 1800 16:9 5,76 Мпикс
WQSXGA 3200 × 2048 25:16 6,55 Мпикс
QUXGA 3200 × 2400 4:3 7,68 Мпикс
Ultra WQHD 3440 × 1440 21:9 4,95 Мпикс
4K UHD (Ultra HD)[1] (UHDTV-1) 3840 × 2160 16:9 8,29 Мпикс
WQUXGA 3840 × 2400 16:10 9,2 Мпикс
4K DCI (Cinema 4K) 4096 × 2160 19:10 8,8 Мпикс
5K / UHD + 5120 × 2880 16:9 14,7 Мпикс
HSXGA 5120 × 4096 5:4 20,97 Мпикс
WHSXGA 6400 × 4096 25:16 26,2 Мпикс
HUXGA 6400 × 4800 4:3 30,72 Мпикс
8K UHD (UHDTV-2) (Super Hi-Vision) 7680 × 4320 16:9 33,17 Мпикс
WHUXGA 7680 × 4800 16:10 36,86 Мпикс
Компьютерный стандарт / название устройства Разрешение Соотношение сторон экрана Пиксели, суммарно
VIC-II multicolor, IBM PCjr 16-color 160 × 200 0,80 (4:5) 32 000
TMS9918, ZX Spectrum 256 × 192 1,33 (4:3) 49 152
CGA 4-color (1981), Atari ST 16 color, VIC-II HiRes, Amiga OCS NTSC LowRes 320 × 200 1,60 (16:10) 64 000
QVGA 320 × 240 1,33 (4:3) 76 800
Acorn BBC в 40-строчном режиме, Amiga OCS PAL LowRes 320 × 256 1,25 (5:4) 81 920
WQVGA 400 × 240 1.67 (15:9) 96 000
КГД (контроллер графического дисплея) ДВК 400 × 288 1.39 (25:18) 115 200
Atari ST 4 color, CGA mono, Amiga OCS NTSC HiRes 640 × 200 3,20 (16:5) 128 000
WQVGA Sony PSP Go 480 × 272 1,76 (30:17) 130 560
Вектор-06Ц, Электроника БК 512 × 256 2,00 (2:1) 131 072
466 × 288 1,62 (233:144) 134 208
HVGA 480 × 320 1,50 (15:10) 153 600
Acorn BBC в 80-строчном режиме 640 × 256 2,50 (5:2) 163 840
Amiga OCS PAL HiRes 640 × 256 2,50 (5:2) 163 840
Контейнер AVI (MPEG-4 / MP3), профиль Advanced Simple Profile Level 5 640 × 272 2,35 (40:17) 174 080
Black & white Macintosh (9″) 512 × 342 1,50 (256:171) 175 104
Электроника МС 0511 640 × 288 2,22 (20:9) 184 320
Macintosh LC (12″)/Color Classic 512 × 384 1,33 (4:3) 196 608
EGA (в 1984) 640 × 350 1,83 (64:35) 224 000
HGC 720 × 348 2,07 (60:29) 250 560
MDA (в 1981) 720 × 350 2,06 (72:35) 252 000
Atari ST mono, Toshiba T3100/T3200, Amiga OCS, NTSC чересстрочный 640 × 400 1,60 (16:10) 256 000
Apple Lisa 720 × 360 2,00 (2:1) 259 200
VGA (в 1987) и MCGA 640 × 480 1,33 (4:3) 307 200
Amiga OCS, PAL чересстрочный 640 × 512 1,25 (5:4) 327 680
WGA, WVGA 800 × 480 1,67 (5:3) 384 000
TouchScreen в нетбуках Sharp Mebius 854 × 466 1,83 (11:6) 397 964
FWVGA 854 × 480 1,78 (427:240) 409 920
SVGA 800 × 600 1,33 (4:3) 480 000
Apple Lisa+ 784 × 640 1,23 (49:40) 501 760
800 × 640 1,25 (5:4) 512 000
SONY XEL-1 960 × 540 1,78 (16:9) 518 400
SONY PSVITA 960 × 544 1,76 (30:17) 522 240
Dell Latitude 2100 1024 × 576 1,78 (16:9) 589 824
Apple iPhone 4 960 × 640 1,50 (3:2) 614 400
WSVGA 1024 × 600 1,71 (128:75) 614 400
1152 × 648 1,78 (16:9) 746 496
XGA (в 1990) 1024 × 768 1,33 (4:3) 786 432
1152 × 720 1,60 (16:10) 829 440
1200 × 720 1,67 (5:3) 864 000
1152 × 768 1,50 (3:2) 884 736
WXGA[2] (HD Ready) 1280 × 720 1,78 (16:9) 921 600
NeXTcube 1120 × 832 1,35 (35:26) 931 840
wXGA+ 1280 × 768 1,67 (5:3) 983 040
XGA+ 1152 × 864 1,33 (4:3) 995 328
WXGA[2] 1280 × 800 1,60 (16:10) 1 024 000
Sun 1152 × 900 1,28 (32:25) 1 036 800
WXGA[2] (HD Ready) 1366 × 768 1,78 (683:384) 1 049 088
wXGA++ 1280 × 854 1,50 (640:427) 1 093 120
SXGA 1280 × 960 1,33 (4:3) 1 228 800
UWXGA 1600 × 768 (750) 2,08 (25:12) 1 228 800
WSXGA, WXGA+ 1440 × 900 1,60 (16:10) 1 296 000
SXGA 1280 × 1024 1,25 (5:4) 1 310 720
1536 × 864 1,78 (16:9) 1 327 104
1440 × 960 1,50 (3:2) 1 382 400
WXGA++ (HD+) 1600 × 900 1,78 (16:9) 1 440 000
SXGA+ 1400 × 1050 1,33 (4:3) 1 470 000
AVCHD/«HDV 1080i» (anamorphic widescreen HD) 1440 × 1080 1,33 (4:3) 1 555 200
WSXGA 1600 × 1024 1,56 (25:16) 1 638 400
WSXGA+ 1680 × 1050 1,60 (16:10) 1 764 000
UXGA 1600 × 1200 1,33 (4:3) 1 920 000
Full HD (1080p) 1920 × 1080 1,78 (16:9) 2 073 600
2048 × 1080 1,90 (256:135) 2 211 840
WUXGA 1920 × 1200 1,60 (16:10) 2 304 000
QWXGA 2048 × 1152 1,78 (16:9) 2 359 296
1920 × 1280 1,50 (3:2) 2 457 600
1920 × 1440 1,33 (4:3) 2 764 800
QXGA 2048 × 1536 1,33 (4:3) 3 145 728
2560 × 1080 2,37 (64:27) 2 764 800
WQXGA (WQHD) 2560 × 1440 1,78 (16:9) 3 686 400
WQXGA 2560 × 1600 1,60 (16:10) 4 096 000
Apple MacBook Pro with Retina 2880 × 1800 1,60 (16:10) 5 148 000
QSXGA 2560 × 2048 1,25 (5:4) 5 242 880
WQSXGA 3200 × 2048 1,56 (25:16) 6 553 600
WQSXGA 3280 × 2048 1,60 (205:128 ≈ 8:5) 6 717 440
QUXGA 3200 × 2400 1,33 (4:3) 7 680 000
QuadHD/UHD 3840 × 2160 1,78 (16:9) 8 294 400
WQUXGA (QSXGA-W) 3840 × 2400 1,60 (16:10) 9 216 000
HSXGA 5120 × 4096 1,25 (5:4) 20 971 520
WHSXGA 6400 × 4096 1,56 (25:16) 26 214 400
HUXGA 6400 × 4800 1,33 (4:3) 30 720 000
Super Hi-Vision (UHDTV) 7680 × 4320 1,78 (16:9) 33 177 600
WHUXGA 7680 × 4800 1,60 (16:10) 36 864 000
  1. ↑ Ultra-high-definition television
  2. 1 2 3 WXGA определяет диапазон разрешений с шириной от 1280 до 1366 пикселей и высотой от 720 до 800 пикселей.
  • Jack, K. Video Demystified: A Handbook for the Digital Engineer. — Elsevier Science, 2011. — P. 64. — 944 p. — ISBN 9780080553955.
  • Docter, Q. and Dulaney, E. and Skandier, T. CompTIA A+ Complete Study Guide: (Exams 220-601/602/603/604). — Wiley, 2007. — P. 53—56. — 914 p. — ISBN 9780470114643.
  • Cristaldi, D.J.R. and Pennisi, S. and Pulvirenti, F. Appendix A: Display Specifications // Liquid Crystal Display Drivers: Techniques and Circuits. — Springer, 2009. — 316 p. — ISBN 9789048122554.

об эволюции разрешений дисплеев Android-смартфонов — android.mobile-review.com

28 мая 2014

Илья Субботин

Facebook

Twitter

Вконтакте

Google+

Если вы следили за новостями Android в течение последних лет, то, несомненно, заметили прогресс в развитии аппаратной части устройств. На самом деле, процессоры стали быстрее, телефоны легче, но есть и другой компонент, который со временем подвергся эволюции. Речь идет о размере дисплеев и их разрешениях.

По мере анонса новых продуктов и стремления компаний дистанцироваться от конкурентов, одним из качественных показателей стал экран. Больший размер, как правило, позиционируется как сравнительно лучший, но это не всегда так. Время от времени можно наблюдать больший дисплей, который выглядит совсем не так четко, как аналогичного размера дисплей другого устройства. С другой стороны, можно встретить и дисплеи сравнительно небольшого размера с очень высоким разрешением.

Размеры дисплеев обычно обозначаются набором символов или акронимом (сокращением) , основанном на размерах дисплея в высоту и ширину. Но, несмотря на растущее количество акронимов, на деле довольно несложно запомнить их значения. Давайте взглянем на некоторые привычные для Android-смартфонов разрешения. Также, кратко затронем и планшеты. По мере того, как вы уясните для себя информацию по смартфонам, семи- и десятидюймовые экраны станут понятнее.

Принятые сокращения и расширения дисплеев Android-устройств:

QVGA (240×320)
HVGA (320X480)
WVGA (480×800)
qHD (540×960)
HD (1280×720)
FHD (1920×1080)
QHD (2560×1440)
WXGA (1280×800)
WQXGA (2560×1600)

Экспресс-ликбез

Возвратимся во время выхода первого Android-смартфона, G1 от T-Mobile, когда размер дисплеев был на уровне 3.2 дюйма. Со временем мы могли наблюдать плавное увеличение размеров, в значительной мере с выходом HTC Evo 4G, дебютировавшего с дисплеем 4.3”. В 2011 году мы увидели ряд топовых устройств с четырехдюймовыми дисплеями и разрешением 540х960 пикселей. В последующем поколении устройств топовые устройства оснащались разнообразными HD-дисплеями.

Стоит отметить, что производители телефонов спешно вешали ярлык «HD» на любой экран, имеющий 720 пикселей в ряд. По аналогии с телевизорами, есть разница между HD-разрешениями 720p и 1080p. От размера экрана также зависит, «сможет» ли глаз найти отличия между этими разрешениями. Кто-то поспорит, что разрешение 1080p на пятидюймовом дисплее чрезмерно и человеческий глаз не способен различать такие детали.

Возвращаясь к современным трендам, налицо тенденция устанавливать в телефоны дисплеи размером 5 дюймов и более. Примерами популярных устройств с подобными дисплеями могут стать Samsung Galaxy S5 и вся линейка Galaxy Note. По мере уменьшения рамок производители телефонов могут понемногу увеличивать размеры экранов, не увеличивая при этом общий форм-фактор.

VGA

В первые годы жизни Android-устройства оснащались дисплеями Video Graphics Array (VGA) в различных вариациях и разных размеров. Стандартное VGA-разрешение составляет 640х480 пикселей (480х640 в зависимости от ориентации дисплея). Ранние Android-смартфоны имели дисплеи с разрешением 320х480 пикселей или HVGA. Почему “H”, вы спросите? Это указывает на то, что разрешение в два раза меньше стандартного VGA (Half, англ. – половина).

Следуя этому же принципу, QVGA-разрешение составляет ¼ от стандартного разрешения, 320х240 пикселей (Q от quarter, четверть). Увеличиваем размер, получаем WVGA-разрешение с теми же 480 пикселями в высоту, но с большей шириной, отсюда и W (wider– более широкий). Такое разрешение – 800х480 – было популярно в моделях 2010-2011 годов.

  • Примеры HVGA-дисплеев: T-Mobile G1, HTC Hero, LG Optimus V, Motorola Cliq
  • Примеры QVGA-дисплеев: Motorola Flipout, Samsung Replenish,Xperia X10 mini
  • Примеры WVGA-дисплеев: HTC ECO 4G, HTC Desire, Nexus One, Samsung Galaxy S, Motorola Droid X

Иногда можно встретить и FWVGA-разрешение, что будет означать Full Wide VGA (буквально “VGA в полную ширину”). В этом случае привычное разрешение 854х480 пикселей.

  • Примеры FWVGA-дисплеев: Motorola Droid, Sony Xperia U, Sony Xperia Play

XGA

Некоторые модели на базе Android имели дисплеи Extended Graphics Array (XGA) или их вариации. По аналогии с ПК, это разрешение в 1024х768 пикселей. В большое количество Android-смартфонов начинают устанавливать WXGA-дисплеи, что означает – вы уже догадались – широкий XGA с разрешением 1280х768 пикселей.

Если говорить о предельном разрешении, то есть WQXGA в планшете Samsung Nexus 10. Этот 10”-планшет предлагает пользователям картинку разрешением 2560х1600 пикселей, что в 4 раза больше WXGA. По сути перед нами “wider quad XGA” дисплей (quad– четверка).

  • Примеры XGA-дисплеев: LG Optimus Vu.
  • Примеры WXGA-дисплеев: Nexus 4, LG Optimus G, Samsung Galaxy Note
  • Примеры WQXGA-дисплеев: Nexus 10

HD

Многие топовые смартфоны 2011 года оснащались qHD-дисплеями, что означало ¼ от HD-экрана. Заметьте, что маленькую “q” нельзя путать с заглавной “Q”. Первая означает ¼, вторая – 4X. Вы узнаете дисплеи qHD по разрешению в 540х960 пикселей. В 2012 году свет увидели многие аппараты с HD-дисплеями с 720 пикселями в ширину. Это до сих пор самый распространенный вид дисплеев в устройствах с экранами от 4 дюймов и выше, разрешение – 1280х720 пикселей.

На начало 2013 года топовые Android-смартфоны оснащались FHD-дисплеями (Full High Definition, буквально «полное высокое разрешение»). Это означает разрешение 1920х1080 пикселей, как в телевизорах. Некоторые производители именуют его “TrueHD” (“подлинное”) или 1080p HD. Первым официально признанным аппаратом с таким разрешением стал HTC J Butterfly, впоследствии появившийся на рынке США под названием Droid DNA. Впоследствии в 2013 году было анонсировано множество продуктов с дисплеями 1080p.

  • Примеры qHD-дисплеев: HTC One S, Motorola Droid RAZR, HTC Sensation
  • Примеры HD-дисплеев: HTC One X, Motorola Atrix HD, Samsung Galaxy Nexus
  • Примеры FHD-дисплеев: Droid DNA, LG G2, Samsung Galaxy S4

QuadHD

Новая планка в разрешении дисплеев увеличивает в 2-4 раза разрешение стандарта 720p. Летом и во второй половине текущего года появится ряд продуктов с разрешением 2560х1440 пикселей. Первым производителем, установившим такой экран в своё устройство стала Oppo с аппаратом Find 7, более крупные бренды уже последовали за ним: новый флагман LGG3 стал первым аппаратом с Quad HD-разрешением от крупных игроков.

Так выглядит краткая эволюция разрешений дисплеев Android-устройств. Не так страшно, как могло бы показаться, не так ли? Само собой, этот список со временем может быть дополнен по мере появления новых стандартов.

Оригинальная статья

TFT и QVGA 2020

TFT против QVGA

TFT (тонкопленочный транзистор) и QVGA (Quarter VGA) — это два термина, с которыми мы обычно сталкиваемся, когда смотрим на ЖК-экраны мобильных телефонов и других небольших устройств. Они дают нам краткое представление о спецификациях ЖК-дисплея, не слишком много вникая в руководство. Тем не менее, это не конкурирующие технологии, и оба они могут быть истинными для одного устройства. TFT — это метод построения, при котором экран создается путем наложения тонкой пленки из кремния на стеклянную подложку. С другой стороны, QVGA — это просто сокращенный термин, который указывает разрешение 320 × 240. Разрешение VGA составляет 640 × 480, а разрешение QVGA составляет ровно четверть.

TFT — усовершенствованная технология. Знание того, что ваш экран сделан с помощью TFT-процесса, должен сказать вам, что он лучше по сравнению с ЖК-дисплеями, которые были построены с использованием более старых технологий. Он реагирует быстрее, поэтому обеспечивает более текущее движение. Поскольку QVGA является одним из нижних разрешений, вы должны знать, что приобретаемое устройство может быть ограничено в программном обеспечении, которое оно может запустить. Для некоторых приложений требуется разрешение VGA или выше, в то время как другие обеспечивают совместимость с устройствами с разрешением QVGA. Тем не менее, все же лучше проверить приложения, которые вам нужно выполнить, независимо от того, могут ли они поддерживаться устройством, которое вы хотите приобрести.

Благодаря преимуществам TFT LCD, они теперь широко доступны на огромном множестве размеров экрана, которые используются в разных устройствах. Вы найдете TFT на настольных компьютерах, ноутбуках, музыкальных плеерах, нетбуках и многом другом. С другой стороны, QVGA является довольно низким разрешением, и большинство более крупных дисплеев больше не поддерживают его. Устройства, на которых вы обычно видите QVGA, — это мобильные телефоны и портативные музыкальные плееры, где размеры экрана невелики. Даже с помощью этих небольших устройств QVGA медленно заменяется более высоким разрешением VGA. Это тенденция, которая, скорее всего, будет продолжаться, поскольку портативные устройства все чаще становятся мощной электроникой.

Резюме:

1. TFT описывает, как работает ЖК-дисплей, а QVGA — очень популярное разрешение.

2. TFT показывает эффективность и производительность вашего ЖК-дисплея, в то время как QVGA будет определять, какие приложения могут или не могут быть запущены.

3. TFT LCD-дисплеи находятся в самых разных устройствах, в то время как QVGA используется в основном в мобильных телефонах.

WXGA — Википедия

Материал из Википедии — свободной энциклопедии

WXGA (англ. Wide XGA) — набор нестандартных разрешений дисплеев, получившийся из стандарта XGA путём расширения его в широкоформатный экран. Обычно под WXGA понимают разрешение 1366×768, с соотношением сторон 16:9. В 2006 году это разрешение наиболее часто использовалось в ЖК-телевизорах и HD-совместимых плазменных панелях.

Основные разрешения Wide XGA
Разрешение Применение Соотношение
1280×720 Мониторы 16:9
1280×768 Мониторы 16:9.6 (5:3)
1280×800 Мониторы 16:10 (8:5)
1360×768 LCD ТВ 16:9 (примерно)
1366×768 LCD ТВ 16:9 (примерно)
1920×1080 SXRD проекторы 16:9

Широкоформатные разрешения, начиная от 1280×720 и заканчивая 1920×1080, также принадлежат к W*XGA группе где «*» может означать уточнение широкоформатного разрешения например U (WUXGA 1920×1080) Наиболее распространенные WXGA разрешения (в возрастающем порядке по общему числу пикселей):

  • 1280×720
  • 1280×768
  • 1280×800
  • 1360×768
  • 1366×768
  • 1440×900

WXGA широко используется в LCD телевизорах и мониторах для широкоэкранных презентаций. Разрешения 1366×nnn чаще применяются в LCD телевизорах и ноутбуках, в то время как разрешения 1280×nnn более часто применяются в смартфонах и планшетах.

1280×720 выдает точные квадратные пиксели при соотношении сторон 16:9, в то время как дополнительные пиксели в разрешениях 1280×768 и 1280×800 должны быть игнорированы, чтобы выдать разрешение 16:9 без вертикальных полос на изображении. Разрешения 1360×768 и 1366×768 имеют соотношения сторон, очень близкие к 16:9. При разрешении 1360×768 получаются полностью квадратные пиксели.

720p, видеорежим HDTV, относительный стандарт, означающий разрешение 1280×720 пикселей.

Дисплеи с разрешением 1440×900 также маркируются как WXGA; однако, на самом деле корректнее обозначать их как WSXGA или WXGA+.

Что такое хорошо и что такое плохо, или FAQ по LCD-мониторам / Мониторы и проекторы

Вы собираетесь приобрести новый монитор, но не знаете, какую именно модель Вам выбрать. Ситуация, согласитесь, встречается сплошь и рядом. Навязчивой рекламе веры особой нет, как, впрочем, и рекомендациям продавцов (исключения бывают, но очень редко), частенько стремящихся поскорее сбыть залежалый товар. Словом, в таком важном деле, как выбор нового монитора, рассчитывать приходится исключительно на себя и заслуживающие доверия источники информации. Впрочем, далеко не все готовы в поисках нужной информации «перелопачивать» груды специализированных бумажных и интернет-изданий. Что ж, особой беды в том нет — в предлагаемом вашему вниманию FAQ можно найти ответы на многие вопросы, встающих перед потенциальными покупателями современных мониторов. Вопрос: Какие бывают типы матриц LCD-мониторов и чем они отличаются друг от друга?
Ответ: Матрица — важнейшая часть LCD-монитора, целиком и полностью определяющая качество его изображения. Современные мониторы имеют матрицы трех основных типов:
  1. TN + film (Twisted Nematic + film), или просто TN — самый старый и недорогой в производстве тип матриц, характеризуется минимальным временем отклика, относительно скромной цветопередачей, небольшими углами обзора с заметным искажением цветов при изменении угла наблюдения (особенно по вертикали), а также невысокой контрастностью. Впрочем, технологии не стоят на месте, и изъяны в качестве изображения современных TN матриц можно обнаружить, только специально отыскивая их. LCD-мониторы с матрицами типа TN хорошо подходят для работы в интернете, с офисными приложениями (преимущественно — текстовыми), для динамичных 3D-игр («стрелялки», симуляторы). Можно на них смотреть и фильмы, но только в одиночестве — при групповом просмотре будут сказываться ограниченные углы обзора.
  2. IPS (In-Plane Switching) матрицы отличаются наилучшей цветопередачей, обеспечивают среднюю (по современным меркам) контрастность, углы обзора свыше 170° (практически без видимых искажений цветов при уменьшении угла наблюдения, причем как по горизонтали, так и по вертикали), тогда как время реакции пикселей у них оставляет желать лучшего. Однако в настоящее время классические матрицы типа IPS на рынке практически не встречаются, их сменили S-IPS матрицы с относительно малым временем реакции, использующие технологию Overdrive (о ней — ниже), если и уступающие по этому параметру матрицам типа TN, то самую малость. Таким образом, у S-IPS матриц остался только один недостаток — достаточно высокая, далеко не всегда оправданная, цена. Исходя из этого мониторы с S-IPS матрицами позиционируются, в основном, для профессиональной работы с графикой или как престижные модели для домашнего использования.
  3. Матрицы типа *VA (MVA — Multi-domain Vertical Alignment, PVA — Patterned Vertical Alignment и их разновидности) характеризуются высокой контрастностью, достаточно хорошей цветопередачей, широкими углами обзора (не хуже, чем у S-IPS), но по цене обходятся дороже, чем TN. Слабой их стороной, в сравнении с IPS-технологиями, является наличие небольшого цветового сдвига при отклонении от нормали к экрану, особенно в темных оттенках изображения. В современных матрицах A-MVA (Advanced MVA) и S-PVA (Super PVA) данный эффект менее заметен, но окончательно не изжит. По совокупности своих параметров матрицы этого типа занимают промежуточное положение между высококачественными, но слишком дорогими S-IPS матрицами и дешевыми середнячками типа TN и, дополненные технологией Overdrive (без нее *VA мониторы практически непригодны для динамичных игр), могут стать хорошим компромиссным решением в качестве универсального домашнего монитора.
Вопрос: Что такое Overdrive?
Ответ: Технология компенсации времени отклика LCD-матрицы, известная как Overdrive (у каждого производителя она имеет свое фирменное название) обеспечивает существенное ускорение переключения пикселей. Характерной особенностью LCD-матриц любого типа является то, что при переходе от «черного» к «белому» время реакции пикселя гораздо меньше, чем, например, при переходе между двумя градациями «серого». Почему? Потому, что скорость изменения состояния пикселя напрямую зависит от приложенного к нему напряжения, а в первом случае на электроды пикселя подается максимальное напряжение. Суть технологии Overdrive заключается в подаче точно рассчитанных (исходя из информации о положения кристалла в предыдущем кадре) так называемых «разгонных» импульсов напряжения для каждого нового значения пиксела в следующем кадре. Величина импульса значительно превышает номинальное для требуемого состояния напряжение, подаваемое после него, поэтому кристаллы поворачиваются в нужное положение гораздо быстрее. Данная технология позволяет значительно поднять среднюю «скорость» вывода изображения на экран монитора, однако она привносит и ряд негативных моментов, что не позволяет считать ее панацеей. Во-первых, Overdrive требует усложнения электроники монитора но, самое неприятное, иногда могут появляться артефакты (светлое мерцание на темно-серых поверхностях) при воспроизведении динамичных сцен. В любом случае, идеального «овердрайва» на 100% без ошибок не бывает, но здесь все зависит от тщательности проработки алгоритмов «разгона» конкретными производителями и в процессе совершенствования технологии количество огрехов изображения стремится к нулю. Вопрос: Что такое «битый пиксель»?
Ответ: Каждый пиксель LCD-монитора состоит из трех субпикселей зеленого, синего и красного цветов, которые, грубо говоря, являются регулируемыми заслонками на пути света. Иногда эти «заслонки» выходят из строя («залипают» в закрытом или открытом состояниях). В результате мы имеем постоянно светящуюся (или наоборот, постоянно потухшую) точку на экране — это и есть дефектный (или, по простому, битый) пиксель. Предельно допустимое количество дефектных пикселей, в зависимости от размеров экрана, определяется в международном стандарте ISO 13406-2. Стандарт определяет 4 класса качества LCD-мониторов. Самый высокий класс — 1, вообще не допускает наличия дефектных пикселей. Самый низкий класс — 4, допускает наличие до 262 (просто ужас!) дефектных пикселей на миллион работающих. К счастью, сегодня мониторы класса 4 практически не выпускаются. Подавляющее большинство современных непрофессиональных ЖК-мониторов соответствуют классу 2. Так, для наиболее популярных 17″ и 19″ мониторов (имеющих разрешение 1280 x 1024) допустимой нормой является по 3 дефектных пикселя (постоянно выключенных или постоянно светящихся) и до 7 светящихся красных, зеленых или синих субпикселей (всего — до 13 дефектных пикселей). Чаще всего «битые пиксели» проявляются в первые дни использования «свежекупленного» монитора и, если их количество не превышает нормы стандарта ISO 13406-2, их наличие не является поводом для предъявления каких-либо претензий. Вопрос: Что такое «разрешение дисплея» и как оно обозначается?
Ответ: Разрешение любого дисплея — это полное количество пикселей, формирующих изображение. Например, разрешение 1280 х 1024 означает, что изображение состоит из 1024 строк по 1280 точек в каждой. Чем выше разрешение, тем, естественно, более четким получается изображение. Сегодня каких-либо официальных стандартов обозначения разрешений дисплеев не существует, однако сложилась и успешно развивается полуофициальная система подобных наименований (таблица 1).

Таблица 1

Сокращение

Полное название

Разрешение

WHUXGA

Wide Hex Ultra Extended Graphics Array

7680 x 4800

HUXGA

Hex Ultra Extended Graphics Array

6400 x 4800

WHSXGA

Wide Hex Super Extended Graphics Array

6400 x 4096

HSXGA

Hex Super Extended Graphics Array

5120 x 4096

WQUXGA

Wide Quad Ultra Extended Graphics Array

3840 x 2400

QUXGA

Quad Ultra Extended Graphics Array

3200 x 2400

WQSXGA

Wide Quad Super Extended Graphics Array

3200 x 2048

QSXGA

Quad Super Extended Graphics Array

2560 x 2048

QXGA

Quad Extended Graphics Array

2048 x 1536

WUXGA

Wide Ultra Extended Graphics Array

1920 x 1200

UXGA

Ultra Extended Graphics Array

1600 x 1200

WSXGA+

Wide Super Extended Graphics Array+

1680 x 1050

SXGA+

Super Extended Graphics Array+

1400 x 1050

WSXGA

Wide Super Extended Graphics Array

1600 x 1024

SXGA

Super Extended Graphics Array

1280 x 1024

WXGA

Wide Extended Graphics Array

1366 x 768

XGA

Extended Graphics Array

1024 x 768

SVGA

Super Video Graphics Array

800 x 600

WVGA

Wide Video Graphics Array

852 x 480 (858 x 484)

VGA

Video Graphics Array

640 x 480

EGA

Enhanced Graphics Adaptor

640 x 350

QVGA

Quarter Video Graphics Array

320 x 240

CGA

Color Graphics Adaptor

320 x 200

Вопрос: Что такое «размер пикселя» и как он влияет на качество изображения?
Ответ: Понятие «размер пикселя» (и обратная ему величина — количество пикселей на дюйм) напрямую связано с разрешением матрицы монитора — чем выше ее разрешение, тем меньше расстояние между соседними пикселями и, тем самым, выше четкость изображения. Однако однозначно утверждать, что высокое разрешение матрицы — это хорошо, а низкое — плохо, не стоит, равно как и наоборот. Ведь с уменьшением визуальных размеров элементарных элементов внешнего оформления — различных графических элементов и, в особенности, системных шрифтов, в графических ОС увеличивается количество информации на площади дисплея, но и восприятие этой информации несколько усложняется, особенно для людей, имеющих проблемы со зрением или много работающих с текстом. Поэтому при покупке нового монитора нужно отдавать себе отчет, что, покупая монитор с небольшим размером пикселя, вы соответственно привязываете себя к мелкому тексту. На такую меру, как увеличение размера системных шрифтов в настройках операционной системы, рассчитывать не стоит — масштабируемость современных ОС все еще не на высоте, и неудобств такое решение может принести изрядно. Для работы с графикой, наоборот, более предпочтительными являются модели с небольшим размером пиксела из-за меньшей «зернистости» изображения. Так что наилучшей рекомендацией потенциальному покупателю LCD-монитора будет не «зацикливаться» на чьих-то советах и рекомендациях, а самому пойти в магазин и подобрать оптимальный (для своих глаз) размер и разрешение матрицы, а приведенная ниже таблица 2 позволит составить предварительное впечатление о различных типах типичных матриц.

Таблица 2

Диагональ матрицы,
дюймы

Разрешение

Соотношение
сторон

Расстояние
между
пикселами, мм

Пикселов
на дюйм (PPI)

обозначение

в пикселах

15

XGA

1024 x 768

4:3

0,297

85,5

16

SXGA

1280 x 1024

5:4

0,248

102,4

17

WXGA

1280 x 768

15:9

0,2895

87,8

17

SXGA

1280 x 1024

5:4

0,264

96,2

17

WXGA+

1440 x 900

16:10

0,255

99,6

18,1

SXGA

1280 x 1024

5:4

0,2805

90,6

19

SXGA

1280 x 1024

5:4

0,294

86,3

19

WXGA+

1440 x 900

16:10

0,284

89,4

19

WXGA

1600 x 1200

4:3

0,242

105,3

20,1

WSXGA+

1680 x 1050

16:10

0,258

98,4

20,1

UXGA

1600 x 1200

4:3

0,255

99,6

20,8

QXGA

2048 x 1536

4:3

0,207

122,7

21,3

UXGA

1600 x 1200

4:3

0,27

94

22

WSXGA+

1680 x 1050

16:10

0,282

90,1

22,2

WQUXGA

3840 x 2400

16:10

0,1245

204

23

WUXGA

1920 x 1200

16:10

0,258

98,4

23,1

UXGA

1600 x 1200

4:3

0,294

86,9

24

WUXGA

1920 x 1200

16:10

0,269

94,34

26

WUXGA

1920 x 1200

16:10

0,2865

87,1

27

WUXGA

1920 x 1200

16:10

0,303

83,9

30

WQXGA+

2560 x 1600

16:10

0,251

101

Вопрос: Какие бывают цифровые интерфейсы мониторов и в чем заключается их преимущество перед обычными, аналоговыми?
Ответ: Аналоговый интерфейс D-Sub является наследием уходящих в прошлое CRT-мониторов. Главный его недостаток — необходимость двойного аналого-цифрового преобразования сигнала (первый раз цифровые данные преобразуются в аналоговый сигнал в видеокарте, а второй — происходит обратное преобразование в мониторе), что, естественно, не способствует улучшению его качества (особенно в больших разрешениях). В настоящее время он вытесняется цифровым интерфейсом DVI (Digital Video Interface), посредством которого цифровые данные из видеокарты, минуя цепочку АЦП-ЦАП, подается непосредственно на схему управления матрицы LCD-монитора. Изображение в этом случае передается на монитор без потерь качества из-за преобразования, кроме того, «по цифре» теперь и осуществляется управление монитором, так что пользователь освобождается от довольно сложной и трудоемкой процедуры «тонкой» подстройки параметров изображения. При этом не стоит упускать из виду, что реальное преимущество от использования интерфейса DVI может проявиться только на мониторах с диагональю 20″ и выше, да и то, только при наличии достаточно качественной видеокарты. В мониторах с диагональю 15″-19″ заметного выигрыша в качестве изображения по сравнению с аналоговым интерфейсом ожидать не стоит. В настоящее время интерфейс D-Sub устанавливается в LCD-мониторы в основном для обеспечения их совместимости со старыми видеокартами, не имеющими DVI выхода (в первую очередь — системных плат с интегрированным видео). И лишь только самые дешевые бюджетные модели LCD-мониторов (в целях экономии) используют интерфейс D-Sub в качестве основного и вообще не имеют DVI-входа. Интерфейс DVI имеет три варианта реализации:
  • DVI-D — базовый интерфейс, обеспечивающий только «цифровое» подключение;
  • DVI-I — расширенный вариант интерфейса DVI-D, наиболее часто встречающийся в настоящее время. Обеспечивает передачу как цифрового, так и аналогового сигнала, для которого в кабеле выделены специальные линии;
  • DVI-A — используется только для передачи аналоговых данных. Физически реализуется в качестве переходника (или, что гораздо реже, кабеля) для подключения к разъему DVI-I.
Кабеля типов DVI-D и DVI-I могут быть двух типов: Single- или DualLink. Кабель первого типа, в соответствии со своим названием, содержит только один канал DVI и обеспечивает разрешение до 1920х1080. Но для новых 30″ мониторов, разрешение которых достигло 2560 x 1600 пикселей, пропускной способности кабеля SingleLink явно не хватит, и выход был найден в объединении двух таких интерфейсов в едином «конструктиве» — получился интерфейс DualLink. Естественно, и видеокарта должна поддерживать DualLink, т.е. иметь два автономных DVI выхода. Кроме того, в последнее время популярность набирает новый стандарт передачи видеосигнала HDMI (High-Definition Multimedia Interface). Его несомненным достоинством является одновременная передача как видео, так и аудио, что более актуально в бытовой технике, чем в компьютерах. Что же касается собственно передачи видеосигнала, то в этом отношении HDMI не имеет каких-либо реальных преимуществ перед привычным DVI. Вопрос: Что такое цветовая температура?
Ответ: Термин «цветовая температура», грубо говоря, характеризует оттенок белого цвета. Ведь спектральный состав света от любого нагретого источника непосредственно зависит от его температуры — свет лампочки, имеющий желтоватый оттенок, мы воспринимаем как более «теплый», тогда как свет более горячих источников, таких как, например, электрическая дуга (голубоватый оттенок) — куда как более «холодный». Но белый цвет на экране монитора (спектр которого, в отличие от любого нагретого источника, не сплошной) является комбинацией трех основных цветов: красного (Red), зеленого (Green) и синего (Blue), поэтому цветовая температура для монитора — понятие условное. Чем ниже цветовая температура, тем больше смещение спектра в красную (теплую) область, а чем выше — в «холодную» синюю. Стандартные значения цветовой температуры 9300K и 6500K примерно соответствуют дневному безоблачному небу и люминесцентной лампе излучения соответственно. Цветовая температура 6500К в наибольшей степени соответствует общепринятому цветовому охвату и рекомендуется для повсеместного использования, хотя при работе с графическими объектами (и просмотре видео) можно установить и более высокие ее значения. Но при обычных работах, не требующих особой точности цветопередачи (офисные задачи, да и большинство домашних), никакой нужды в высокой цветовой температуре нет. Вопрос: Каким образом можно проверить LCD-монитор перед его покупкой?
Ответ: Для быстрой проверки монитора Вам понадобятся специальные программы-тесты монитора. Таких программ множество, но лично мне более симпатичен TFT монитор тест 1.52 (646 Кб, http://www.tfttest.fromru.com/). Эта бесплатная программа не требует инсталляции, работает с любого носителя и содержит исчерпывающий набор тестов для проверки основных параметров LCD-матрицы.

Выбор теста программы TFT монитор тест 1.52

Наиболее важной задачей при покупке монитора является определить наличие у него битых пикселей. Для этого служит тест «Закрашенный экран». Последовательно изменяем цвета заливки и внимательно наблюдаем: если на каком-то цвете виден горящий иным цветом пиксель, то это значит, что имеется дефектный субпиксель, а если пиксель имеет черный или белый цвет при любом цвете экрана, то мы имеем дефектный пиксель. Кроме того, на белом, черном и сером экранах можно оценить равномерность подсветки, хотя по-настоящему проверить подсветку можно только в полной темноте, что в условиях магазина невозможно. С помощью другого теста — «Двигающийся квадрат», можно визуально оценить скорость реакции матрицы (по наличию «хвоста» у квадрата), а также обнаружить битые пиксели, пропущенные предыдущим тестом. Кроме того, не помешает проверить (в первую очередь — игроманам), насколько четкую картинку обеспечивает монитор в разрешениях, отличных от «родного». Для этого следует воспользоваться тестами «Линии», «Сетка», «Окружности» и «Узоры». При особом желании можно также задействовать и другие тесты: проверить равномерность цветовых переходов, предельные значения и плавность изменения яркости и контраста, читабельность мелкого текста и пр., но эти тесты уже не столь важны, как перечисленные выше. Вопрос: Какое время отклика матрицы достаточно для игр?
Ответ: К сожалению, безоглядно доверяться тем цифрам времени отклика матрицы, которые приводят производители мониторов в их спецификациях, не стоит. Давно уже не секрет, что каждый производитель измеряет этот параметр его по-своему, стремясь получить наиболее «красивую» цифру, использовать которую можно лишь только для предварительной оценки возможностей монитора. Традиционная методика измерения времени реакции пикселя, определяемая упомянутым выше стандартом ISO 13406-2, оговаривает измерение суммарного времени включения и выключения пикселя, то есть переход «черное-белое-черное» (BWB — Black-White-Black). Причем под временем включения пиксела понимается время, необходимое для изменения яркости пикселя от 0 до 90% (а не до 100%), а под временем выключения пикселя понимается время, необходимое для изменения яркости пикселя от 100 до 0%. Другая методика измерения времени переключения, используемая преимущественно в «разогнанных» матрицах, поддерживающих технологию Overdrive, оценивает время перехода от одного оттенка серого к другому (GTG — Gray-To-Gray). Какая же из этих двух методик ближе к истине? Однозначного ответа на этот вопрос нет. На первый взгляд, методика BWB, охватывающая полный диапазон «вращения» кристалла, более полно характеризует его быстродействие. Но это далеко не так — ведь скорость «поворота» жидкого кристалла напрямую зависит от приложенного к нему напряжения, которое при переходах BWB максимально. Во-вторых, резкие переходы от черного к белому редко встречаются в динамичных приложениях, ради которых, собственно, и затевается вся эта «гонка пикселов», гораздо чаще мы имеем переходы между промежуточными значениями состояния кристалла. Но и методика измерения GTG также не дает нам всей правды — ведь в этом случае время реакции пикселя определяется в основном не возможностями самой матрицы, а совершенством электроники системы Overdrive. Сегодня наиболее быстрые модели мониторов имеют время реакции пикселя 2 мс GTG (не достижимого без Overdrive), что более чем достаточно для любых современных динамических игр. Тем не менее, не стоит забывать, что выбор ЖК-монитора (в том числе и для игр) — дело сугубо индивидуальное. Поэтому при покупке оцените монитор «на глаз», проверьте его с помощью утилиты TFT монитор тест 1.52, и, если выбранная модель Вас не устраивает, попробуйте найти другую, более быструю модель. Вопрос: На старых CRT-мониторах рекомендовалось устанавливать рабочую частоту кадровой развертки не менее 85, а то и 100 Герц, а LCD-мониторы работают на гораздо более низких частотах — 60, в крайнем случае, 75 Герц. Почему так мало?
Ответ: Все дело в том, что принципы работы электронно-лучевых (CRT) и жидкокристаллических (LCD) мониторов различны. Для CRT кадровая частота является одним из самых критичных параметров и характеризует степень «мерцания» экрана, при ее малом значении глаза быстро утомляются. Тогда как в LCD-мониторах «мерцание» экрана принципиально отсутствует — ведь пикселы «светятся» постоянно. Следовательно, какая бы кадровая частота монитора не была установлена, зрению ничего не угрожает. А влияет этот параметр исключительно на скорость обновления изображения на экране, и 60 кадров в секунду для человека более чем достаточно. Вопрос: Как правильно следует ухаживать за монитором?
Ответ: Удалять пыль с экрана монитора лучше всего с помощью двух безворсовых салфеток (например, фланелевых). Первой, слегка влажной, удаляется пыль, а второй, сухой — экран протирается «насухо». Если же экран сильно загрязнен (разводы от жидкости, отпечатки пальцев), то без специализированных средств очистки (гель или аэрозоль и комплект салфеток) не обойтись. Но никогда для этих целей не стоит использовать спирт и спиртосодержащие жидкости! Лучше примените их по прямому назначению, пользы будет гораздо больше. Пластиковый корпус монитора можно чистить, используются слабые щелочные чистящие средства (мыло, жидкость для мытья), нанесенные на увлажненную ткань. А вот использование «сильнодействующих» чистящих средств, содержащих растворитель или, тем паче, абразивные вещества, более чем нежелательно, так как может необратимо испортить нежные пластиковые детали. Во время чистки монитора не стоит пренебрегать элементарными правилами техники безопасности: прежде всего, следует вынуть вилку сетевого шнура монитора из розетки и ни в коем случае не допускать попадания жидкости внутрь корпуса монитора. Вопрос: В законе о защите прав потребителей имеется положение о возможности возврата не понравившегося товара в течение 2 недель со дня покупки. Распространяется ли это на мониторы?
Ответ: Закон о защите прав потребителей относит компьютерные мониторы к категории «сложные электронные устройства», на которые правило возврата товара в течение 14 дней без указания причин не распространяется. Тем не менее, многие серьезные торговые организации идут навстречу потребителю, введя у себя услугу «money back», по которой обязуется принять не понравившийся покупателю товар в течение оговоренного периода времени. Но «money back», являясь не более чем проявлением «доброй воли» со стороны продавца, во избежание возможных недоразумений обязательно должен быть обговорен в процессе покупки монитора.

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

WXGA — это… Что такое WXGA?

Основные разрешения Wide XGA
Разрешение Применение Соотношение
1280×720 Мониторы 16:9
1280×768 Мониторы 16:9.6 (5:3)
1280×800 Мониторы 16:10 (8:5)
1360×768 LCD ТВ 16:9 (примерно)
1366×768 LCD ТВ 16:9 (примерно)
1920×1080 SXRD проекторы 16:9

WXGA (англ. Wide XGA) — набор нестандартных разрешений дисплеев, получившийся из стандарта XGA путем расширения его в широкоформатный экран. Обычно под WXGA понимают разрешение 1366×768, с соотношением сторон 16:9. В 2006 году это разрешение наиболее часто использовалось в ЖК-телевизорах и HD-совместимых Плазменных панелях.

Широкоформатные разрешения, начиная от 720×800 и заканчивая 1920×1080, также принадлежат к W*XGA группе где «*» может означать уточнение широкоформатного разрешения например U (WUXGA 1920×1080) Наиболее распространенные WXGA разрешения (в возрастающем порядке по общему числу пикселей):

  • 1280×720
  • 1280×768
  • 1280×800
  • 1360×768
  • 1366×768
  • 1440×900

WXGA широко используется в LCD телевизорах и мониторах для широкоэкранных презентаций. Разрешения 1366×nnn чаще применяются в LCD телевизорах и ноутбуках, в то время как разрешения 1280×nnn более часто применяются в смартфонах и планшетах.

1280×720 выдает точные квадратные пиксели при соотношении сторон 16:9, в то время как дополнительные пиксели в разрешениях 1280×768 и 1280×800 должны быть игнорированы, чтобы выдать разрешение 16:9 без вертикальных полос на изображении. Разрешения 1360×768 и 1366×768 имеют соотношения сторон, очень близкие к 16:9. При разрешении 1360×765 получаются полностью квадратные пиксели.

720p, видеорежим HDTV, относительный стандарт, означающий разрешение 1280×720 пикселей.

Дисплеи с разрешением 1440×900 также маркируются как WXGA; однако, на самом деле корректнее обозначать их как WSXGA или WXGA+.

Разное

Отправить ответ

avatar
  Подписаться  
Уведомление о